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End-to-end learning allows communication systems to achieve optimal performance compared with conventional
blockwise structure design. By modeling the channel with neural networks and training the transmitter and
receiver on this differentiable channel, the whole system can be jointly optimized. However, in existing schemes,
channel modeling methods, such as the generative adversarial network and long short-term memory network,
have complex architectures and cannot track channel changes, leading to less effective end-to-end learning.
Meanwhile, the complexity of neural networks deployed at the transmitter and receiver is too high for practical
applications. In this work, we propose an efficient and low-complexity end-to-end deep learning framework and
experimentally validate it on a 100G passive optical network. It uses a noise adaptation network to model channel
response and noise distribution and employs offline pretraining and online tracking training to improve the
efficiency and accuracy of channel modeling. For the transmitter, it consists of a pattern-dependent look-up table
(PDLUT) based on a neural network (NN-PDLUT) with a single convolutional layer. Further, the receiver is also
an NN with a single convolutional layer; thus, the end-to-end signal processing is extremely simple. The exper-
imental results show that end-to-end learning improves the receiver sensitivity by 0.85 and 1.59 dB compared
with receiver-only equalization based on Volterra nonlinear equalization (VNLE) and joint equalization based on
a PDLUT and a feed-forward equalizer, respectively. Moreover, the number of multiply–accumulate operations
consumed by the transmitter and receiver in the end-to-end learning scheme is reduced by 75.7% compared with
VNLE-based receiver-only equalization. © 2024 Optica Publishing Group. All rights, including for text and data mining

(TDM), Artificial Intelligence (AI) training, and similar technologies, are reserved.
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1. INTRODUCTION

Over the past decade, the passive optical network (PON) has
been evolving continuously in terms of data rate per wave-
length, architecture, and capacity to support new business and
applications in 5G and the coming 6G era. Now that 50G-
PON has been standardized by the International Telecom-
munication Union (ITU-T) and the Institute of Electrical and
Electronics Engineers (IEEE) [1,2], the ITU-T has started
the study of the next PON standard of very high-speed PON
(VHSP) [3], aiming for a line rate beyond 50 Gb/s. Thus far,
there is no extensive agreement on whether VHSP will use
direct or coherence detection and whether the downstream
rate is 100 or 200 Gb/s, for the reason of the cost per bit per
meter. Intensity modulation and direct detection (IM/DD)
is a cost-effective implementation method for PON and
has been accompanying the physical layer of PON up to
50 Gb/s. However, as the data rate further increases, IM/DD
faces serious bandwidth limitation, modulator nonlinearity,

fiber chromatic dispersion, and power budget issues. A low-
complexity and high-performance system impairment com-
pensation scheme is urgently needed [4–6].

In recent years, deep learning technology has made progress
in the fields of natural language, image, and video processing.
It also earns a lot of attention in research on optical communi-
cation, including compensating for signal impairments [7,8],
optimizing algorithms [9], modeling channels [10,11], and
monitoring system performance [12]; further, deep neural
networks or deep learning algorithms demonstrate prominent
advantages over traditional schemes for these tasks. To improve
the overall system performance, end-to-end deep learning of
optical communication system is proposed [13]. Unlike the
blockwise design style of traditional optical communication
systems, end-to-end deep learning replaces separate modules
(e.g., encoding/decoding, modulation/demodulation, pulse
shaping, equalization, etc.) at the transmitter and receiver with
a pair of neural networks, which are then jointly trained over
a differentiable channel. Through end-to-end learning, the
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suboptimal problem of independent module design can be
avoided, and the system performance can achieve the global
optimum as much as possible.

Generally, in an end-to-end communication system, two
symmetric neural networks are used as the transmitter and
receiver, which are regarded as an autoencoder (AE) structure.
Based on how the AE is trained, end-to-end learning can be
categorized into three types of schemes. The first one is to
portray the channel with a formulaic model, such as using
formulaic models to represent devices like analog-to-digital
converters (ADCs) and digital-to-analog converters (DACs),
modulators, and photoelectric detectors [13] or using the split-
step Fourier method (SSFM) [14] or regular perturbation
model [15,16] to represent fiber channels. Then, the AE can
complete gradient backpropagation through the channel
represented by the formula during training. The modeling in
this type of scheme has the advantage of high interpretability,
but, in actual experiments, various effects interact with each
other, making it difficult to characterize the channel accurately.
This leads to some discrepancy between the channel charac-
terized by the formula and the real physical channel, affecting
end-to-end learning performance.

The second one uses a data-driven approach to overcome
this problem [17,18]. Researchers train a neural network
to model the real channel with channel input and out-
put data via, for example, using a long short-term memory
(LSTM) network [19], a generative adversarial network (GAN)
[20–22], a deep fully connected neural network (DNN), [23]
or an interpretable DNN that incorporates a mathematical
model of an optical transmission system [24]. The differen-
tiable channel is then fixed, and the AE is trained on it. A
data-driven modeling approach can achieve more accurate
channel models. However, channel changes cannot be tracked
in this scheme, when the experimental channel undergoes slow
changes (power or bias point drift, etc.), the channel modeled
with historical information may be inaccurate, affecting the
end-to-end optimization results. Moreover, retraining LSTM-
or GAN-based channel models consumes a lot of time because
LSTM cannot be processed in parallel, and a GAN contains a
pair of models that need to be trained interactively.

The last scheme is completely different from the previous
two schemes. It eliminates the need for channel modeling
and instead performs end-to-end learning directly on the real
channel. Similar to the derivative-free optimization in opti-
mization theory, this scheme achieves joint optimization of the
transmitter and receiver by using a policy gradient algorithm
[25] to estimate the gradient of backpropagation or the cuba-
ture Kalman filter algorithm [26] to update trainable weights.
But they usually come at the expense of training efficiency
and require longer training times due to the instability of the
gradient estimate in the experiments.

In these end-to-end learning algorithms, only the sys-
tem performance is focused on, while the complexity of the
neural networks at the transmitter and receiver is usually
ignored, which leads to their inability to be practically applied.
Considering the training efficiency and complexity of end-
to-end learning, a new end-to-end learning framework is
proposed. For the differentiable channel, we start from fitting a
probability distribution function. According to the principle of

maximum likelihood estimation, we design a noise adaptation
network to model the channel response and the impact of
system noise on transmitted signals. The structure of the noise
adaptation network adopts the feed-forward multiscale deep
neural network (MscaleDNN) [27,28], which possesses the
capability to effectively learn the features at different frequen-
cies. To adapt to different channel conditions and the slow
changes of the channel state, a new training strategy combining
offline pretraining and memory-buffer assisted online tracking
training is designed. For different link configurations, we can
directly load the corresponding offline pretrained parameters
into the channel network and then utilize online training to
periodically collect new channel data in the memory buffer,
randomly sampling data from it to train the channel network.
For the transmitter, we design a neural network-based pattern-
dependent look-up table (NN-PDLUT) and then combine it
with a convolutional layer to precompensate for the nonlinear
and linear impairments in the system. A pattern-dependent
look-up table (PDLUT) [29–31] is commonly used by adding
a correction term to symbols to be transmitted, offering simple
implementation and efficient nonlinear compensation. For
the receiver, we only use a convolutional layer to compensate
for the residual linear impairments. As a result, the entire
end-to-end learning framework is highly adaptable and has low
complexity.

In order to validate the proposed end-to-end learning frame-
work, comparative experiments are conducted on a 100 Gbps
O-band IM/DD PON system with a 10 GHz Mach–Zehnder
modulator (MZM). The compared schemes include the pro-
posed end-to-end learning, receiver-only equalization based
on a feed-forward equalizer (FFE), and Volterra nonlinear
equalization (VNLE), as well as joint transmitter and receiver
equalization based on a PDLUT and an FFE. Experimental
results indicate that the end-to-end learning framework has
a fast convergence rate, and the noise adaptation network
can accurately model the experimental channel, enabling the
transmitter and receiver to provide clean compensation for
linear and nonlinear impairments in the system. Compared
with receiver-only equalization based on VNLE and joint
equalization based on a PDLUT and an FFE, end-to-end
learning improves the receiver sensitivity by 0.85 and 1.59 dB,
respectively. Moreover, the number of multiply–accumulate
(MAC) operations consumed by the transmitter and receiver in
the end-to-end learning scheme is reduced by 75.7% compared
with VNLE-based receiver-only equalization. The proposed
end-to-end learning scheme demonstrates the advantages of
high performance and low complexity.

The main contributions of this paper can be summarized as
follows:

(1) A noise adaptation network architecture is proposed to
simultaneously model the channel frequency response and
noise effects. It has a simple structure and is easy to train.

(2) Offline pretraining with the memory-buffer-assisted
online tracking training method is designed to improve
the channel model’s adaptability to channel state changes
and accelerate end-to-end learning efficiency.
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(3) A low-complexity transceiver signal processing scheme is
proposed, and significant performance gain is achieved
through end-to-end learning.

The rest of this paper is organized as follows. First, the
basic components and principles of the proposed end-to-end
learning framework are introduced in Section 2. Then, the
experimental setup and experimental results are presented in
Sections 3 and 4, respectively. Finally, a conclusion is given in
Section 5.

2. END-TO-END DEEP LEARNING PRINCIPLES

The proposed end-to-end deep learning framework is shown
in Fig. 1. At the transmitter, random bit sequence Tbits is first
modulated into symbols T symbols and then preprocessed by the
TxNN to generate transmitted signal samples T samples. After
transmission over the optical fiber link, the received signal sam-
ples Rsamples is processed by the RxNN. Finally, the obtained
equalized symbols E symbols are demodulated to a bit sequence
Rbits.

The components that need to be learned in the framework
include the TxNN, the RxNN, and the noise adaptation chan-
nel. The TxNN and the RxNN are neural networks deployed
at the transmitter and receiver, respectively. They are respon-
sible for signal processing tasks. The noise adaptation channel
is also a neural network for modeling optical fiber links and
acts as a differentiable channel used for gradient backprop-
agation for joint training of the TxNN and the RxNN. The
goal of end-to-end learning is to minimize the joint losses
Loss1 + Loss2.

Next, the principles and training methods of each com-
ponent in the end-to-end deep learning framework are
introduced in detail.

A. Noise Adaptation Channel

As a platform for end-to-end learning, the more accurately
a differentiable channel inscribes the physical channel, the
better the end-to-end learning will perform. Previous channel
modeling approaches mainly used a GAN and its variants or
an LSTM network and then train the networks by collecting
signal data offline. However, both of them have poor training
efficiency. A GAN includes two sets of networks, a generator
and a discriminator, which need to be trained alternately.
LSTM has a recurrent structure; as a result, parallel compu-
tation is not supported in LSTM. Besides, when the channel
state changes slowly, the offline trained channel network loses
match with the physical channel, degrading the end-to-end
training performance.

Considering that the physical channel output is a random
probability distribution, we can fit this arbitrary distribution

Fig. 1. End-to-end deep learning framework.

Fig. 2. Noise adaptation network.

using a Gaussian mixture model ([32], Chapter 3). For general
short-reach IM/DD optical fiber communication systems, it
is usually sufficient to use a Gaussian distribution. Thus, we
design a noise adaptation network Ch,s to simulate the channel
response and noise distribution. Its structure is shown in Fig. 2,
including a mean network h and a variance network s (for com-
plex probability distribution scenarios, we can expand multiple
mean networks and variance networks to form a Gaussian mix-
ture model). x ∈Rm×sps is the input of the network, obtained
by sliding the window on T samples ∈RL sym×sps. L sym is the
length of T symbols, m is the size of the sliding window, and
sps is the number of samples per symbol. The output of the
noise adaptation network is ŷ ∈Rsps, and ŷ follows an sps-
dimensional Gaussian distribution with mean value µ ∈Rsps

and covariance matrix 6 ∈Rsps×sps. The probability density
function (PDF) of ŷ is as follows:

f
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)T
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)]}
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(1)
where µ= h(x), 6 = diag(s (x)), and diag(·) denotes the
diagonalization of a vector. h(x) and s (x) are the outputs of
the mean network and variance network, respectively. When
the noise adaptation network serves as the simulated channel,
the channel output is randomly sampled from the distribution
shown in Eq. (1).

Both the mean and variance networks use the MscaleDNN
as their network structure. The MscaleDNN is a kind of
network architecture designed based on the frequency prin-
ciple [28] and possesses the capability to effectively learn
the response at different frequencies. The structure of the
MscaleDNN is shown in Fig. 3, as a sum of K subnetworks,
in which each scale input goes through a subnetwork, and
α1, α2, . . . , αK are scale coefficients, usually set as αi = i or
αi = 2i−1. The concrete subnetwork structure is a feed-forward
structure, containing an input 1D convolutional layer, two lin-
ear layers with activation function LeakyReLU, and an output
1D convolutional layer.

The noise adaptation network is trained based on the
maximum log-likelihood function method. T samples and
Rsamples are used to produce the training data set, input data xn

is
[
T samples

(
n − m−1

2 , :
)
, . . . , T samples(n, :), . . . , T samples(

n + m−1
2 , :

)]T
∈R×sps, and corresponding label yn is

Rsamples(n, :) ∈Rsps. Let {(x1, y1), (x2, y2), . . . , (x B , yB )}

denote the B groups of data and labels sampled from the train-
ing data set. Then, the maximized log-likelihood function can
be expressed as follows:
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Fig. 3. Structure of the MscaleDNN and its subnetwork.
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B. Memory-Buffer-Assisted Online Channel Training

After constructing the channel network, we need to collect
input and output data from the physical channel to train the
network. However, in a practical environment, it is inevitable
to encounter problems such as modulator bias point drift,
power fluctuations, etc. This leads to the fact that the channel
model based on historical data does not represent the current
state of the channel. Differences between the channel model
and the physical channel can lead to poor end-to-end learning
results.

To overcome this, a memory-buffer-assisted online channel
training method is introduced, paired with an offline pre-
training method, to shorten the channel modeling time, track
channel changes, and maintain a stable end-to-end learning
process. As shown in Fig. 4, the noise adaptation channel is
first pretrained using historical channel data. Then, during the
end-to-end learning process, the channel network is switched
to tracking training mode. Transmitted signal samples T samples

and received signal samples Rsamples from the physical channel
are periodically saved in pairs to the memory buffer to provide
the most up-to-date training data reflecting the current channel
state. It is worth emphasizing that T samples used for the training
channel follow a uniform distribution of [−1, 1], regardless of
offline pretraining and online tracking training.

By combining offline pretraining and online tracking train-
ing, the convergence of the loss function is accelerated when
training the channel network, allowing the channel network to
finish modeling the real physical channel faster. It further helps
to increase the training speed of the TxNN and the RxNN
and improve the efficiency of end-to-end optimization because
the TxNN, the RxNN, and the channel network are trained
alternatively.

Fig. 4. Memory-buffer-assisted online channel training.

C. Transmitter and Receiver

Generally, in an end-to-end communication system, two
neural networks are arranged at the transmitter and receiver
to constitute an AE structure. However, the excessive com-
plexity of these networks is often overlooked. To realize a
low-complexity end-to-end learning framework, we build the
TxNN and RxNN with a simple PDLUT and a single linear
layer. The PDLUT can mitigate pattern-dependent distortion
and nonlinear impairments by adding a correction term to
symbols to be transmitted. In the classical training approach,
the PDLUT is made with received symbols after compensating
for intersymbol interference (ISI), then placed at the transmit-
ter. Although it is convenient to train independently in this
way, the results may not be optimal. By contrast, end-to-end
learning offers the possibility to achieve joint optimization and
flexible pre- and postprocessing.

The designed structure of the TxNN Tθ is shown in Fig. 5.
It contains two parts: one part is the NN-PDLUT, and the
other is a single convolutional layer. Further, θ denotes the
weights and bias of the TxNN. For the NN-PDLUT, a
sliding window with a fixed memory length of L is used to
separate the transmitted symbols T symbols into a pattern-
dependent symbol sequence

[
T symbols

(
n − L−1

2

)
, . . . ,

T symbols(n), . . . , T symbols
(
n + L−1

2

)]
, the modulation

order of T symbols is M, so there are ML pattern sequence
types. Then, the LUT index i is determined by the pattern
sequence and converted into a one-hot vector as the input
of the NN-PDLUT. The NN-PDLUT uses a residual net-
work architecture composed of four linear layers; the two
middle hidden layers use ELU as an activation function. The

Fig. 5. Structure of the TxNN, including two parts: (a) NN-
PDLUT and (b) single convolutional layer.
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Fig. 6. Structure of the RxNN.

NN-PDLUT’s output, NNLUT(i), is the LUT value cor-
responding to the LUT index i . The preprocessed symbols
TpreSymbols are implemented as follows:

TpreSymbols(n)= T symbols(n)−NNLUT(i). (3)

For the second part in the TxNN, it uses a sliding window
with the length of LT to separate preprocessed symbols
into the input sequence

[
TpreSymbols

(
n − LT−1

2

)
, . . . ,

TpreSymbols(n), . . . , TpreSymbols
(
n + LT−1

2

)]
, and the corre-

sponding output of the single convolutional layer is
T samples(n) ∈Rsps.

At the receiver, the RxNN Rw is responsible for recovering
received signals into original transmitted symbols. Its structure
is shown in Fig. 6, with only one convolutional layer, where
w denotes the weights and bias of the TxNN. The received
signal samples Rsamples are first resampled to sps= 1 to obtain
received symbols Rsymbols. Similarly, a sliding window with
the length of L R is used to separate the received symbols
Rsymbols into the input sequence

[
Rsymbols

(
n − L R−1

2

)
, . . . ,

Rsymbols(n), . . . , Rsymbols
(
n + L R−1

2

)]
, and the corresponding

equalized output is E symbols(n) ∈R.

D. End-to-End Training Process

After constructing the channel network, transmitter network,
and receiver network, they are trained to minimize the specified
channel modeling loss function and end-to-end loss function
via a gradient-based algorithm. In this work, the channel mod-
eling loss function is shown in Eq. (2), where end-to-end loss
function Losse consists of two parts, as shown in Fig. 1. Losse

can be expressed as follows:

Losse = Loss1 + Loss2, (4)

where Loss1 is the MSE loss between transmitted symbols
T symbols and equalized output E symbols. It is defined as

Loss1 =
1

L sym

L sym∑
n=1

‖T symbols(n)− E symbols(n)‖2. (5)

Loss2 is the MSE loss between T symbols and R̂samples. It is
defined as

Loss2 =
1

L sym

L sym∑
n=1

‖T symbols(n)− R̂symbols(n)‖2, (6)

Algorithm 1. Low-Complexity End-to-End Learning

1: Initialization:
2: Randomly initialize the noise adaptation channel C h,s ,

the TxNN Tθ , the RxNN Rw , and the memory buffer.
3: Pretraining:
4: Pretraining C h,s with historical T samples and Rsamples

5: Main loop:
6: for i = 1: MainEpoch
7: Inner loop-1:
8: for j = 1: ChEpoch
9: Sample T samples from a uniform distribution of [−1, 1]

and transmit;
10: Save T samples and received signal Rsamples to the

memory buffer;
11: Sample N sets of T samples and Rsamples from the

memory buffer to construct the training data set;
12: Update C h,s according to Eq. (2).
13: end for
14: Inner loop-2:
15: for k = 1: TREpoch
16: Keep C h,s fixed;
17: Send random bit sequence, construct the

training data set with T symbols, Rsamples and E symbols.
18: Update Tθ and Rw by minimizing the end-to-end loss

function defined as Eq. (4).
19: end for
20: end for

R̂symbols(n)=
1

sps

sps∑
i=1

R̂samples(n, i) , (7)

where L sym is the size of T symbols.
Loss2 is a constraint loss, similar to the constraints imposed

on the target solution in the optimization area. Loss2 forces the
TxNN to take on more signal-processing tasks in end-to-end
learning, thus ensuring that the RxNN can use a simple FFE
structure, which is more in line with the DSP complexity
requirements of PON.

Finally, the detailed training process of proposed end-to-end
learning is summarized in Algorithm 1. It consists of initializa-
tion, pretraining, and the main loop.

In the main loop, the noise adaptation channel is first
trained in inner loop-1; inner loop-1 is executed ChEpoch
times. Then, the TxNN and the RxNN are trained in inner
loop-2 TREpoch times. The two inner loops are repeated until
the loss functions converge. Finally, to compensate for the
difference between the modeled channel and the real physi-
cal channel for better end-to-end learning performance, the
RxNN is fine-tuned with the transmitted and received signals
from the experimental system.

3. EXPERIMENTAL SETUP

To validate the effectiveness of the proposed end-to-end
learning framework, we conduct a comparison test on the
downstream transmission of a 100G IMDD-PON system.
These schemes include receiver-only equalization, PDLUT-
based joint transceiver equalization, and end-to-end learning.
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Fig. 7. Experimental schematics of 100G IMDD-PON for the
three schemes: (a) receiver-only equalization, (b) PDLUT-based joint
transceiver equalization, and (c) end-to-end learning.

The corresponding experimental schematics are shown in
Fig. 7.

In Fig. 7(a), at the transmitter, random bits are first mapped
to PAM-4 symbols with a symbol rate of 100 Gb/s; then, a root
raised cosine (RRC) filter with the roll-off factor of 0.1 is used
for pulse shaping. After that, the digital signal is resampled
to 120 GSa/s before being loaded into the Keysight M8194A
arbitrary waveform generator (AWG) with the sampling rate
of 120 GSa/s. The AWG’s output signal is amplified by a
23 dB electrical amplifier (EA) and modulated by a 10 GHz
MZM biased at its quadrature point; further, a 1310 nm
distributed feedback (DFB) laser is used for the light source.
Optical launch power is controlled by a semiconductor optical
amplifier (SOA) to 12 dBm, and the signal is transmitted over
20 km standard single mode fiber (SSMF). At the receiver, the
received optical power (ROP) is adjusted by a variable optical
attenuator (VOA); then, the signal is detected by a 30 GHz
avalanche photodiode (APD) and extracted by a Tektronix dig-
ital storage oscilloscope (DSO) with a 33 GHz bandwidth and
100 GSa/s sampling rate. Finally, the offline DSP is executed,
including resampling (to 1 sample per symbol), synchroniza-
tion, FFE or VNLE equalization, symbol decision, and BER
statistic.

The FFE can be expressed as Eq. (8), where r (n) is the nth
received signal, o(n) is the corresponding output, and w(l) is
the l th tap value, and ntaps is the number of taps:

o(n)=

ntaps−1
2∑

l=−
ntaps−1

2

w(l)r (n − l). (8)

Third-order VNLE can be expressed as Eq. (9), where k1, k2,
and k3 are the first, second, and third-order memory length,wi

for i = {1, 2, 3} is the i th order Volterra kernel:

Fig. 8. Convergence results for (a) the reward value and
(b) the first-, second-, and third-order memory length during the
optimization for third-order VNLE.

o(n)=

k1−1
2∑

l1=−
k1−1

2

w1(l1)r (n − l1)

+

k2−1
2∑

l1=−
k2−1

2

k2−1
2∑

l2=l1

w2(l1, l2)r (n − l1)r (n − l2)

+

k3−1
2∑

l1=−
k3−1

2

k3−1
2∑

l2=l1

k3−1
2∑

l3=l2

w3(l1, l2, l3)r (n − l1)

× r (n − l2)r (n − l3) (9)

The FFE and VNLE are trained by the least mean square
(LMS) algorithm. For VNLE, we use an automatic opti-
mization algorithm [9] to obtain its first-order memory
length k1, second-order memory length k2, and third-
order memory length k3. In the optimization process, the
reward value (i.e., the optimization objective) is defined as
1000∗(1− BER). With the MAC operation limit of 1000
under ROP=−14.5 dBm, the convergence results for the
reward value and memory lengths with the number of opti-
mization steps are as shown in Figs. 8(a) and 8(b). Based on the
convergence results, k1, k2, and k3 are set to 131, 27, and 5.
Further, ntaps of the FFE is set to 131.

In Fig. 7(b), the PDLUT is trained at the receiver and
then placed at the transmitter. The PDLUT consists of table
index i and table value LUT(i). To make the PDLUT, first, a
sequence of PAM-4 symbols t(n) is processed by pulse shap-
ing and resampling. After transmission over the system link,
the received signal undergoes feed-forward equalization to
eliminate ISI, the equalized symbols are denoted as yFFE(n).
Then, a sliding window with a memory length of L is used
to separate t(n) into the pattern-dependent symbol sequence[
T
(
n − L−1

2

)
, . . . , T(n), . . . , T

(
n + L−1

2

)]
; for PAM-4 sym-

bols, there are 45
= 1024 pattern sequence types when L = 5,

which means table index i = 0∼ 1023. Table value LUT(i)
is obtained through Eqs. (10)–(13). e (n) is the difference
between yFFE(n) and t(n), and N(i) is the number of repeated
patterns at index i .
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Table 1. Network Parameters of the TxNN, the RxNN, and the Noise Adaptation Channel

Parameter Meaning Value

TxNN M Modulation order 4
L Sliding window length of the NN-PDLUT 5
N1 Number of neurons in the linear layer 64
N2 Number of neurons in the linear layer 32
N3 Number of neurons in the linear layer 32
LT Sliding window length 55

RxNN L R Sliding window length 131
Noise adaptation channel m Size of the convolving kernel in the convolution layer 129

sps Samples per symbol 2
K Number of sub-networks in the MscaleDNN 5

αi , i = 1, ... , K Scale coefficients 2i−1

M1 Number of channels produced by the convolution layer 128
M2 Number of neurons in the linear layer 64
M3 Number of neurons in the linear layer 32

Table 2. Training, Validation, and Test Parameters for End-to-End Learning

Parameter Value

Training parameter Main loop MainEpoch 50
Inner loop-1 ChEpoch 2

Number of bits sent 8192
Learning rate 1e−4
Batchsize 256
Number of samples from the memory buffer per ChEpoch 5 groups

Inner loop-2 TREpoch 150
Number of bits sent 4096
Learning rate 5e−4

Validation parameter Number of symbols used to fine-tune the RxNN 10,000
Number of symbols used to calculate the valid BER 22,768

Test parameter Number of symbols used to fine-tune the RxNN 10,000
Number of symbols used to calculate the test BER 88,304

e (n)= yFFE(n)− t(n), (10)

LUT(i)= LUT(i)+ e (n), (11)

N(i)= N(i)+ 1, (12)

LUT(i)= LUT(i)/N(i). (13)

After completing the PDLUT, the transmitted symbols are
precompensated by the PDLUT and then postcompensated by
the retrained FFE.

Figure 7(c) demonstrates the end-to-end learning scheme;
for the TxNN, the RxNN, and the noise adaptation channel,
their network structures and training methods are described in
Section 2. The parameters of the TxNN, the RxNN, and the
noise adaptation channel are set according to Table 1, and the
training, validation, and test parameters are shown in Table 2.
The validation data set is built by randomly generating 32,768
PAM4 symbols at the end of each main epoch, where the first
10,000 symbols are used to fine-tune the RxNN to obtain the
best performance (the compared classical equalizers are also
fully trained using 10,000 symbols), and the remaining 22,768

symbols are used to compute the BER on the validation data
set (i.e., valid BER).

Finally, all schemes use three sets of PAM4 symbols with a
length of 32,768 for BER testing. Similarly, the first 10,000
symbols are used to fine-tune the RxNN; the remaining sym-
bols are used to calculate the BER on the test data set for
performance evaluation.

4. EXPERIMENTAL RESULTS

Figure 9 demonstrates the training process of the end-to-end
learning scheme under ROP=−14.5 dBm. The variation of
the channel modeling loss function in the channel pretraining
stage is shown in Fig. 9(a), named the channel pretraining
loss. In the online tracking training stage, the variation of the
channel modeling loss function with the main epoch is shown
in Fig. 9(b), named the channel online-training loss. Both
the channel pretraining loss and the channel online-training
loss correspond to the negative form of Eq. (2). By comparing
Figs. 9(a) and 9(b), it can be seen that the loss value is below
−1 when finishing the pretraining stage, but the value is higher
than −1 at the beginning of online tracking training. This
suggests that the channel model trained offline is overfitted and
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Fig. 9. (a) Variation of the channel modeling loss with the train-
ing step during the channel pretraining stage. (b) Variation of the
channel modeling loss with the main epoch during the channel
online-training stage. (c) End-to-end valid BER with the main epoch
using only the pretrained channel network. (d) End-to-end valid BER
with the main epoch using the online-trained channel network.

therefore needs to be tuned in conjunction with online track-
ing training. At the end of each main epoch, we validate the
TxNN and the RxNN with 32,768 symbols, of which 10,000
symbols are used to fine-tune the RxNN, and the remaining
22,768 symbols are used to calculate the validation BER,
named the valid BER. The variation of the valid BER with the
main epoch using only a pretrained channel network is shown
in Fig. 9(c), and the valid BER using the online-trained chan-
nel network is shown in Fig. 9(d). By comparison, it can be
seen that the memory-buffer-assisted online channel training
method can reduce the difference between the channel model
and real physical channel, achieve better BER performance,
and avoid retraining the channel model from scratch, saving
training time. Finally, after finishing end-to-end training, the
TxNN is kept fixed for different ROPs, and no retraining is
required.

In Fig. 10, the power spectral density for the output signal
of the noise adaptation channel is compared with that of the
real physical channel. The noise adaptation channel models the
entire frequency response of the transmitter device, fiber chan-
nel, and receiver device. It can be seen that the noise adaptation
channel fits the real physical channel very well in the frequency
range from 0 to 30 GHz, while the frequencies above 30 GHz
lead to large differences in the power spectral density. This is
because there are few useful signal components and mostly
noise components, the power spectral density near 30 GHz is
at least 20 dB lower than the low-frequency part. Besides, the
flat power spectral density is due to the precompensation of the
TxNN.

The BER comparison results of three schemes under dif-
ferent ROPs are shown in Fig. 11. RxFFE and RxVNLE are
receiver-only equalization schemes, TxPDLUT_RxFFE is a
PDLUT-based joint transceiver equalization scheme, and E2E
means the end-to-end learning scheme (Code 1, Ref. [33]). In
the end-to-end learning scheme, it is worth emphasizing that
the experimental results corresponding to the other ROPs are
all retrained directly from the pretrained models (noise adapta-
tion channel and TxNN) obtained under ROP=−14.5 dBm.
It can demonstrate the adaptability of the proposed framework
and save a lot of training time. These schemes are represented

Fig. 10. Power spectral density for output signals of the noise
adaptation channel and the real physical channel.

Fig. 11. BER comparison results of three schemes under different
ROPs.

by four solid lines with different markers. Considering that
maximum-likelihood sequence estimation (MLSE) equaliza-
tion is the theoretically optimal equalizer in the presence of
additive Gaussian white noise (AWGN), we add a whitening
filter and MLSE to each scheme to demonstrate the optimal
BER performance. The length of the estimated channel in
MLSE is set to 4, and the BER results are represented by
corresponding dotted lines.

As can be seen in Fig. 11, E2E outperforms RxVNLE,
TxPDLUT_RxFFE, and RxFFE from the perspective of
BER performance. Due to the joint optimization of the
transmitter and receiver by end-to-end learning, suboptimal
performance originating from isolated module designs can
be avoided. According to the BER threshold of 1e-2, E2E
allows 30.9 dB power budget, and it can increase the receiver
sensitivity by 0.85 and 1.59 dB compared with RxVNLE and
TxPDLUT_RxFFE. When these schemes are further pro-
cessed by the MLSE equalizer, their BER performances are all
improved. It can be found that the BER performance of E2E
is similar to that of RxVNLE with MLSE. This shows that
end-to-end learning is able to better compensate for linear and
nonlinear impairments in the system.

Under ROP=−18.5 dBm, the statistical distributions of
received PAM-4 signals obtained from the three schemes are
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Fig. 12. Statistical distribution of received signals processed by dif-
ferent schemes under ROP=−18.5 dBm.

Fig. 13. (a) Comparison of look-up table values. (b) Comparison
of transmitted signals in the end-to-end learning scheme and the
PDLUT-based joint transceiver equalization scheme.

as shown in Fig. 12. It can be seen that the signal from the
end-to-end learning scheme has clearer decision boundaries
among different symbols, while the other schemes do not
distinguish clearly between adjacent symbols, leading to poor
BER performance (BER> 1e−2).

In the end-to-end learning scheme, the TxNN contains an
NN-PDLUT. Therefore, we compare the training results of
the NN-PDLUT with the PDLUT in the PDLUT-based joint
transceiver equalization scheme. Figure 13(a) illustrates the
lookup table indexes and values learned by the two schemes.
Since the memory length L of the PDLUT is 5, for PAM-4
modulation, there are 1024 indexes. It can be noticed that the
table values obtained by the two schemes are very different.
This is because a traditional PDLUT is obtained by averaging
the deviations of the input and output of a particular pattern

sequence, whereas the NN-PDLUT in the TxNN learns the
rule that handles these deviations better (no longer do aver-
aging like a traditional PDLUT) in an end-to-end learning
process. Moreover, the learned features of the NN-PDLUT
receive the influence of a 1D convolutional layer in the TxNN
during the joint training. Figure 13(b) presents the power
spectral density of the signals generated at the transmitter
in the two schemes. In the end-to-end learning scheme, the
TxNN contains a convolutional layer to compensate for linear
impairments. It can be seen that the high-frequency compo-
nent of the signal is lifted, and the low-frequency component is
depressed for compensating for the system bandwidth limita-
tion. The spectrum of the precompensated signal becomes flat
after transmission through the experimental system, as shown
in Fig. 10.

In the PON system, in addition to the power budget, the
complexity is also an important consideration. In hardware
design, the digital signal processor (mainly used to imple-
ment multiplication, addition, and MAC operations) and the
LUT are two are two major computing resources. Therefore,
we compare the MAC and LUT consumption of the three
schemes. For an FFE with ntaps taps, it needs to consume
ntaps MAC operations. For a third-order VNLE with memory
length [k1, k2, k3], the number of MAC operations it requires
can be calculated using Eq. (14):

MACVNLE = N1 + 2N2 + 3N3, (14)

where N1 = k1, N2 = k2(k2 + 1)/2, and N3 = k3(k3 + 1)
(k3 + 2)/6.

Figure 14 illustrates the number of computing resources
required for the three schemes. In the RxVNLE scheme, k1, k2,
and k3 are set to 131, 27, and 5; thus, it needs to consume
a total of 991 MAC operations. In the TxPDLUT_RxFFE
scheme, the size of the PDLUT is 1024 and the number of FFE
taps is 131, so it needs to consume 131 MAC operations and
1024 LUTs. In the E2E scheme, the size of the NN-PDLUT
is 1024 and the size of the convolutional layer is 110 in the
TxNN; the size of the convolutional layer is 131 in the RxNN,
so it needs to consume 131 MAC operations and 241 LUTs.
Compared with RxVNLE, MAC consumption in E2E is
reduced by 75.7%. Although a large amount of LUT resources

Fig. 14. Comparison of computing resource requirements for the
three schemes.
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are used, digital signal processor resources are even more valu-
able in the hardware design. Therefore, reducing the MAC
operations in a scheme is helpful and beneficial to hardware
implementation.

5. CONCLUSION

In this paper, a high-performance and low-complexity end-
to-end learning framework is proposed and experimentally
validated in a 100 Gbps IMDD-PON system. Within the
framework, a noise adaptation network is designed to model
the channel response and system noise distribution. Offline
pretraining and online tracking training methods are proposed
to adapt to different channel conditions and slow changes
in channel states, thus enabling the noise adaptation net-
work to accurately simulate the real channel. To achieve a
low-complexity framework, only look-up tables and linear
processing are used. At the transmitter, we use an NN-PDLUT
and a single convolutional layer to compensate for nonlinear
and linear impairments in the system. At the receiver, a single
convolutional layer is used to compensate for residual linear
impairments. The experimental results show that the end-to-
end learning framework improves the receiver sensitivity by
0.85 and 1.59 dB compared with receiver-only equalization
based on VNLE and joint equalization based on a PDLUT and
an FFE, respectively. Moreover, the number of MAC opera-
tions consumed by the transmitter and receiver in end-to-end
learning is reduced by 75.7% compared with VNLE-based
receiver-only equalization. This indicates that the proposed
end-to-end learning framework has significant advantages
in performance and complexity. Through end-to-end learn-
ing, we can explore the optimal performance of a system
and assist the design of algorithms for the transmitter and
receiver. Further, deploying end-to-end learning frameworks
in practical systems is a challenge. As the end-to-end learning
framework requires training a channel network, it needs to
obtain data from the experimental system. Therefore, we not
only need to consider adding a computing module such as a
graphics processing unit in the OLT but also need to design a
data-exchange protocol between the OLT and ONU as well as
determine the length of the time-domain pilot.
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