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Abstract
The surge in interest regarding the next generation of optical fiber transmission has stimulated the development of
digital signal processing (DSP) schemes that are highly cost-effective with both high performance and low complexity.
As benchmarks for nonlinear compensation methods, however, traditional DSP designed with block-by-block modules
for linear compensations, could exhibit residual linear effects after compensation, limiting the nonlinear compensation
performance. Here we propose a high-efficient design thought for DSP based on the learnable perspectivity, called
learnable DSP (LDSP). LDSP reuses the traditional DSP modules, regarding the whole DSP as a deep learning
framework and optimizing the DSP parameters adaptively based on backpropagation algorithm from a global scale.
This method not only establishes new standards in linear DSP performance but also serves as a critical benchmark for
nonlinear DSP designs. In comparison to traditional DSP with hyperparameter optimization, a notable enhancement of
approximately 1.21 dB in the Q factor for 400 Gb/s signal after 1600 km fiber transmission is experimentally
demonstrated by combining LDSP and perturbation-based nonlinear compensation algorithm. Benefiting from the
learnable model, LDSP can learn the best configuration adaptively with low complexity, reducing dependence on
initial parameters. The proposed approach implements a symbol-rate DSP with a small bit error rate (BER) cost in
exchange for a 48% complexity reduction compared to the conventional 2 samples/symbol processing. We believe
that LDSP represents a new and highly efficient paradigm for DSP design, which is poised to attract considerable
attention across various domains of optical communications.

Introduction
With the advancement of modern information tech-

nology, optical fiber communications have been upgraded
in various aspects—from signal processing to fiber man-
ufacturing—to enhance transmission capacity in recent
years1–5. Digital signal processing (DSP), a mature tech-
nology adept at compensating for various linear effects, is
essential for optical fiber transmission systems6–11.
Deriving from physical models, the well-established DSP
structure prioritizes low complexity and high perfor-
mance12–14. In addition, efforts to achieve higher capacity
are often limited by nonlinearities, leading to a reliance on

nonlinear compensations (NLC)15,16. Common NLC
techniques, such as perturbation compensations, are
typically benchmarked against linear DSP17–21. It is
essential that enhancements in nonlinear performance are
evaluated against a baseline where linear impairments
have been effectively minimized. Failing to do so may
result in a biased estimation of performance, influenced
by the benchmark of the linear compensation. Thus, the
design of linear DSP must be approached with high per-
formance and low complexity, aiming to address linear
effects comprehensively.
Typically, conventional DSP operates block-by-block,

with each block addressing a specific task. For instance,
static and dynamic equalizers are designed to counteract
chromatic dispersion (CD) and polarization mode dis-
persion (PMD) in the fiber link, respectively8. However,
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these equalizers may exhibit limited performance given
the comprehensive and global nature of fiber link effects,
due to a lack of global cooperation. Besides, reducing the
complexity of existing DSP architectures with low pro-
cessing rate while maintaining exceptional performance
remains a challenge. The utilization of deep learning (DL)
models offers the advantage of a data-driven approach,
enabling signal processing without the need for expert
knowledge22–25. Recent research has proposed learned
models to address fiber nonlinearities24–27. Notably, DL
techniques have been applied to digital backpropagation
(DBP) by regarding the iterative linear and nonlinear
operations of DBP as the equivalent operations of a deep
neural network (DNN). This approach, known as learned
DBP (LDBP), leverages DL techniques, demonstrating
through simulation and experiment how machine
learning-based approaches can reduce complexity while
achieving comparable performance20,21. The key tech-
nology of deep learning models is gradient descent
through backpropagation algorithm. However, the tradi-
tional DSP framework is incompatible with DL techniques
due to its reliance on model-driven solutions. While some
works have embedded DL algorithms within DSP, the DL
and DSP blocks remain separate entities, where the focus
of optimizations primarily centered on the DL algo-
rithms22,28. Furthermore, the DL is a static compensation
while DSP is an adaptive compensation. Redesigning the
entire DSP framework to incorporate DL methods in
pursuit of performance enhancements may not be cost-
effective. Therefore, it would be appealing to achieve
performance improvements using DL techniques without
requiring significant changes to the existing DSP
framework.
Here, we propose a DSP scheme that we call learnable

DSP (LDSP), reusing the traditional DSP framework while
introducing the DL optimization framework. LDSP treats
the entire DSP as a learnable structure and globally
optimizes the DSP blocks. Specifically, LDSP reuses the
traditional DSP model, with the distinction that all DSP
blocks are made differentiable and learnable. These
learnable parameters can be optimized using stochastic
gradient descent (SGD)29 and its variants through the
backpropagation algorithm, such as the Adam algo-
rithm30, which adaptively modifies the learning rate. In
this way, all LDSP blocks share processing information
globally, enabling comprehensive utilization of DSP
resources for linear compensation. Technically, LDSP is a
traditional DSP framework with online training, harnes-
sing the combination of expert knowledge and the
advantages of DL. As demonstrated in the subsequent
analysis, one LDSP module can achieve several different
functions, showing the high efficiency. The frequency
compensation block in LDSP can simultaneously com-
pensate the IQ skew, local oscillator frequency offset

(LOFO), and CD. Moreover, the sampling errors can be
detected through the IQ skew compensation and time
recovery (TR) can be removed, saving the DSP resources.
The power normalization can align the modulation map
and address the clock tone leakage of digital to analog
converter (DAC).
In comparison to traditional DSP with hyperparameter

optimization, after conducting 1600 km fiber experi-
mental transmission for a 400 Gb/s signal, LDSP exhibits
a noteworthy 0.77 dB and 0.58 dB Q factor improvement
for single-channel and 21-channel transmission, respec-
tively. Combined with NLC, there is an observed perfor-
mance enhancement, achieving a maximum gain of
1.21 dB and 0.9 dB. The implementation of the LDSP
architecture facilitates communication between DSP
modules through backpropagation algorithm, enabling
comprehensive compensation for global signal impair-
ments and thereby enhancing DSP efficiency. One note-
worthy advantage of LDSP is its ability to autonomously
learn various DSP configurations, minimizing the
requirement for fine manual tuning of the DSP modules.
Additionally, the need for a separate TR algorithm can be
eliminated within the LDSP framework. Besides, the
symbol-rate processing can be achieved with little bit
error rate (BER) cost. In this way, LDSP not only achieves
performance improvements but also demonstrates a
remarkable 48% reduction in complexity compared to
2 samples/symbol processing in the typical system. The
LDSP scheme, being an online data-driven model, is
compatible with DL methods, thus ensuring compatibility
and leveraging their benefits. Attaining optimized per-
formance in linear DSPs is crucial for accurately assessing
the advantages offered by nonlinear DSPs, seeking for
higher capacity. It is worth noting that the methods dis-
cussed in this study hold relevance to the broader field of
DSP, which has been gaining considerable attention in
various optical fiber communication scenarios, including
short-reach, medium-reach, and long-haul links.

Results
Learnable DSP
In coherent optical fiber long-haul transmission sys-

tems, various linear distortions, depicted in Fig. 1a, arise
due to imperfections in subsystems. Here, we focus on
linear effects, thoroughly explored in conventional DSP
algorithms. The system complexity stems from the
interaction of linear impairments with different compo-
nents, demanding precise design and DSP in a strategi-
cally structured sequence. DSP plays a pivotal role in
identifying and addressing these mixed effects sequen-
tially, critical for maintaining system integrity and per-
formance. Traditional DSP modules, differentiated into
static and dynamic equalizations to counter distinct sys-
tem distortions (see Fig. 1b), address specific distortion
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characteristics. Static equalizations, such as CD compen-
sation (CDC), are designed to address distortions that
remain constant over time for a fixed optical transmission
link. On the other hand, dynamic equalizations, such as
those for PMD and phase noises, target distortions that
vary dynamically during transmission. For PMD, a time-
domain multiple-input multiple-output (TD MIMO)
equalizer is utilized with 2 samples/symbol processing,
while carrier phase estimation (CPE) handles phase noise.
The CPE process leverages a blind-phase search (BPS)
algorithm for adaptive phase noise tracking. Subsequently,
the least mean squares (LMS) algorithm updates MIMO
parameters, ensuring the optimal performance. Addi-
tionally, the LOFO may exhibit slow variations over time,
necessitating the implementation of a fine LOFO esti-
mation process, which is then feedbacked to enhance the
accuracy of the LOFO estimator. By categorizing the DSP
modules in this manner, the system can effectively address
the specific characteristics of each distortion type. How-
ever, as each module is optimized locally to mitigate a

particular effect, it may lead to an underutilization of DSP
functions and result in local optimization. To achieve
enhanced performance, a potential way involves increas-
ing the complexity of DSP. For instance, the power nor-
malization module ensures the correct signal amplitude
but does not encompass clock leakage compensation,
which necessitates a separate DSP module.
In this work, the proposed LDSP is a learning-based

DSP framework as depicted in Fig. 1c, that extensively
leverages existing DSP modules, such as IQ skew, CD
compensation, CPE, LOFO estimator, and others. While
the majority of the DSP modules remain the same, each
DSP module is treated as a linear layer of a deep neural
network (DNN), and its parameters are optimized using a
learning algorithm through backpropagation, specifically
the SGD method. This approach enables performance
optimization from a global perspective, offering a more
holistic and effective solution.
The LDSP scheme optimizes the IQ skew, LOFO

compensation, and CD compensation within the same
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Fig. 1 LDSP scheme details. a The linear distortions in the optical fiber long-haul transmission system, including the transmitter, channel, and
receiver. b The traditional DSP structure. c The LDSP structure
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frequency-domain module. All the parameters of the DSP
modules are set to be learnable, which means they can be
adjusted and optimized adaptively during the signal pro-
cessing. To avoid the IQ signal mixture after CD com-
pensation, the IQ de-skew is performed before the CD
compensation in the frequency-domain. Prior to the
MIMO compensation, the incoming signals are divided
into several mini blocks to address dynamic effects such
as PMD and phase noises. Each signal block undergoes
windowing through a trainable time-domain filter, a
strategy designed to effectively counteract spectrum
leakage. The frequency-domain MIMO (FD MIMO)
compensation is performed using the overlap-and-save
method, supporting processing at a rate of 1.0–2.0 sam-
ples per symbol31. A BPS algorithm is used to perform a
learnable CPE. By employing a differential approach, the
LDSP scheme can adjust the BPS parameters to track the
phase noise according to the channel distortions present.
This allows for robust and efficient CPE in the LDSP
framework.
In addition to reusing existing DSP modules, the LDSP

framework also seamlessly incorporates the classical DL
structure, capitalizing on its learning capabilities. Classical
DL structures encompass a wide range of effective algo-
rithms, such as batch normalization (BN) layers, residual
layers, and adaptive optimizers. Here, we introduce a
novel modification to the power normalization module by
integrating a complex BN algorithm, drawing inspiration
from the BN scheme32. Unlike traditional power nor-
malization, complex BN not only aligns the amplitude but
also incorporates a bias addition operation. The mathe-
matical equation depicting this modification is presented
below:

y ¼ γ
ðx� μxÞffiffiffiffiffi

px
p þ β ð1Þ

where μx and px are mean and power of signal x. The γ
and β are the learning parameters. Note that the bias β
typically represents a numerical value used in conven-
tional BN algorithms. In contrast to the typical BN
algorithm, the bias β is a complex sequence with zero
mean, equally length as signal x. The incorporation of a
bias sequence instead of a single complex value is driven
by two primary considerations: (1) It stabilizes adaptive
training during the Constant Modulus Algorithm (CMA)
and Multi-Modulus Algorithm (MMA) phases. Utilizing a
single bias value often results in overfitting to the
modulus of the CMA or MMA. (2) It compensates
foradditive distortions such as clock leakage from non-
ideal DAC, where clock information inadvertently
embedded in the signal can lead to symbol interference.
We find the bias sequence can be utilized for clock
leakage compensation, enhancing the overall performance
of LDSP. The complex BN modules have the ability to

automatically adjust power and bias based on the signal
characteristics.
In term of the optimizer, the LDSP uses the SGD with

momentum algorithm. This optimizer, different from the
basic SGD, incorporates momentum to achieve faster
convergence and better performance, which is widely used
for training modern DL architectures. One could also use
the adaptive variants, such as Adam. Adaptive learning
rate methods are theoretically better suited to this task, as
they can control their updates in response to the signal’s
changing nature. While Adam offers superior convergence
properties in many cases, they are computationally more
intensive than simple SGD or momentum-based methods.
This might be a consideration if the model needs to be
deployed in real-time signal processing applications.

Schematic illustration of the LDSP in the experiment
Experiments are conducted to determine the effective-

ness of LDSP in practice. The experimental setup for a
1600 km optical fiber transmission is depicted in Fig. 2a,
with comprehensive details provided in the Materials and
Methods section. To process a long-time signal series
efficiently, the signals are divided into several signal
blocks, shown in Fig. 2b. Signals are processed and the
LDSP framework is updated using the learning algorithm
in a time-sequential manner. This approach allows for
more manageable and computationally efficient proces-
sing of the entire signal series while maintaining the LDSP
performance through iterative learning updates. The
optimization task is supported by the Pytorch frame-
work33, which the version is 2.0 in this work. The received
signal is first resampled to 1.0–2.0 samples/symbol and
then performed DSP. In the following, we will provide the
detail structures of LDSP module, showing how to
improve the efficiency and perform learning algorithms.
It is noteworthy that all DSP operations must be imple-

mented differentially and then the backpropagation algo-
rithm can be performed normally. After passing through the
entire LDSP module, the loss is computed based on the loss
function, and gradients are calculated using the error back-
propagation algorithm. The overall process, including the
forward path, backward path, and parameter updates, is
illustrated in Fig. 2c. The training process for gradient cal-
culation includes two steps: (1) During the mini-block
operation, the loss and gradients are promptly calculated, and
the parameters are updated for the subsequent mini-block
signals. Additionally, the gradients of whole block para-
meters, such as CD and IQ skew parameters, are accumu-
lated and divided by the mini-block number, although the
parameters remain fixed during this step. (2) Updating the
parameters of large blocks according to the averaged gra-
dients. This method allows for averaging out noisy gradients,
thereby stabilizing the training process. LDSP then proceeds
to the next signal block. By allowing the parameters to be
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learned, the LDSP scheme can adapt and optimize the DSP
operations based on the specific characteristics of the optical
fiber transmission system. Moreover, the gradient backward
process functions as an internal interconnection element.
Consequently, LDSP enhances the overall performance and
efficiency of the DSP system, allowing for improved signal
processing and mitigating various distortions in a more
integrated and coordinated manner.
The LDSP is executed in three sequential steps,

employing distinct loss functions as depicted in Fig. 2d.
Initially, due to the inability to perform framing, the
learnable parameters are trained in a blind manner. At the
beginning of the processing, the loss function is set as the
CMA. To address the singularity issue encountered in
CMA training, we employ orthogonal training, wherein
solely the X branch taps undergo training while the Y

branch taps are arranged orthogonally to the X branch
taps34. Following several iterations, the MIMO taps can
transition to full training. Although convergence may not
be attained through orthogonal training, it serves to
mitigate the singularity problem, facilitating subsequent
pretraining process. Once CMA convergence is achieved,
the loss function switches to the MMA35. Simultaneously,
framing is performed. Upon successful framing, the LDSP
transitions to the data-aided tracking case, where the loss
function becomes the mean-square error (MSE) loss
function:

LMSE ¼ 1
N

XN

i¼1

kyi � ŷik ð2Þ

where N represents the number of symbols in a mini block,
yi is the label symbol, and ŷi is the processed symbol from
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the LDSP. MSE loss provides a mathematically tractable
expression that is particularly sensitive to large errors,
leading to a second-order dependence of the cost function
on the unknown coefficients36. Consequently, MSE loss is
widely utilized in various statistical and machine learning
contexts to evaluate performance14–21.
The above overview provides an introduction to the LDSP

scheme, covering its conceptual framework, structural
components, and learning procedure. LDSP treats the entire
DSP modules as a learnable model, harnessing the benefits
of a learnable framework to facilitate global optimization
through the interconnections within the DSP modules.
Furthermore, the reuse of the same structure allows a single
DSP module to effectively process multiple channel dis-
tortions, maximizing the utilization of DSP resources, which
will be shown in the next section. The subsequent section
presents the experimental results of the proposed LDSP.

Performance gain of learnable DSP
To demonstrate the performance improvement

achieved by the LDSP scheme, a comparison was made
between LDSP and traditional DSP in terms of Q factor
performance, which can be calculated from the bit error
rate (BER) using Eq. (3):

Q ¼ 20log10ð
ffiffiffi
2

p
erfc�1ð2BERÞ ð3Þ

The traditional DSP followed the same processing
procedure as LDSP. The MIMO update transitioned from

CMA to MMA, and finally to data-aided least mean
square (LMS). Both LDSP and traditional DSP omitted
the time recovery module. The MIMO configuration used
classical 2 × 2 taps. The traditional DSP had a sampling
rate of 2.0 samples per symbol which is the typical case,
whereas LDSP operated at a rate of 1.25 samples per
symbol. In the LDSP framework, the signal block con-
sisted of 512 symbols divided into 8 mini blocks, with
each mini-block processing 64 symbols simultaneously.
Both single-channel and 21-channel transmission has the
same hyperparameter settings. The learning rate (LR) for
CMA and MMA updates was set to 1.0e−3 for coarse
training, while the MSE update utilized a LR of 1.0e-4 for
fine tracking. The selection of LR was based on the pro-
cessing step, where larger LR values aided the con-
vergence of pretraining in CMA and MMA updates.
During the tracking process, as most static channel effects
had converged, the LR could be reduced to fine-tune the
static effects and track the dynamic effects.
It should be noted that hyperparameters can impact

performance, and an optimization procedure is necessary
in practice. Both traditional and learnable DSP require
such optimization, and LDSP can automatically optimize
some parameters, such as taps of CDC, IQ skew values
and so on. This study involves parameter optimization,
with results illustrated in Fig. 3, conducted on a single-
channel transmission at 2.0 dBm over 1600 km. In prac-
tice, the IQ skew, LR and sampling error significantly
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affect performance. Figure 3a–c demonstrates perfor-
mance variations as functions of IQ skew, LR, and sam-
pling error, respectively. Parameters are individually
searched, holding others at optimal levels. Traditional
DSP showed sensitivity to these parameters, particularly
IQ skew, with potential losses exceeding 4 dB in the worst
scenarios. In contrast, LDSP’s performance remained
relatively stable, which allows for autonomous adaptation
to various configurations, reducing the need for extensive
manual DSP module tuning.
In practice, the hyperparameters of DSP, such as IQ

skew, MIMO learning rate, typically require manual
adjustment based on final DSP performance. This process
can be laborious and time-consuming, particularly when
numerous hyperparameters are involved. To enhance the
efficiency of optimization, hyperparameter optimization
algorithms for DSP could be employed to determine the
optimal performance37–39. The optimization procedure is
executed in five steps: (1) construct the set of hyperpara-
meters to be optimized; (2) determine the initial guesses
for these hyperparameters; (3) apply these guesses within
the DSP to assess performance; (4) use the optimization
algorithm to update the hyperparameters based on
observed performance; (5) repeat from step (3) until the
performance converges. This method allows for efficient
optimization and determination of DSP hyperparameters.
Here for fairness in comparison, traditional DSP hyper-
parameters are optimized together using the standard
Nelder-Mead algorithm in this paper. The Nelder-Mead
algorithm is a popular optimization technique used for
minimizing a function in a multidimensional space37. It’s
particularly useful for hyperparameter optimization where
the function to be minimized is not differentiable. We
have also tested this optimization problem using other
methods, specifically the Truncated Newton (TNC) and
L-BFGS methods. The DSP optimizations focus on the IQ
skew, sampling error, and LR, while other hyperpara-
meters for DSP and LDSP, such as the MIMO size, are set
to be consistent. Figure 3d demonstrates the optimization
procedure, with LDSP’s performance at 7.55 dB serving as
a baseline (dashed line). Trajectories of IQ skew and LR
are shown in Fig. 3e, f. The traditional DSP optimization
results, as depicted in Fig. 3d, demonstrate that all three
optimization methods achieve similar performance, con-
verging to approximately 6.77 dB. These results highlight
LDSP outperforming, which achieves enhanced perfor-
mance through global optimization, rather than solely
optimizing parameters within some DSP modules.
The experimental results revealed that LDSP achieved a

significant improvement in Q factor performance com-
pared to traditional DSP after parameters optimization,
with a gain of 0.77 dB at 2.0 dBm input power for single-
channel 1600 km transmission, as illustrated in Fig. 4a.
Regarding the 21-channel WDM transmission over

1600 km, as illustrated in Fig. 4c, there is an observed
performance enhancement, achieving a maximum gain of
0.56 dB. LDSP consistently outperformed traditional DSP
across all input power levels.
To demonstrate the efficacy of the proposed LDSP under

NLC, we employed the perturbation nonlinear compensation
(PNC) algorithm17–19,40. The results revealed that LDSP-
enhanced PNC exhibits notable NLC capabilities due to the
increased accuracy in linear compensation, enhancing the
precision of nonlinear estimation. This improvement is
quantitatively evident, with performance gains of 1.21 dB and
0.9 dB in single-channel and 21-channel transmission,
respectively. Moreover, as illustrated in Fig. 4b, d, we com-
pared the PNC gains under conventional DSP and LDSP.
Essentially, as power increases, both the optical signal-to-
noise ratio (OSNR) and nonlinear effects are simultaneously
enhanced. Consequently, the Q factor initially improves after
PNC, due to enhanced OSNR and nonlinearities. However,
as nonlinear effects become dominant, the improvement may
deteriorate, constrained by the limited efficacy of PNC. In
conventional DSP, the residual uncompensated linear effects
add additional noise to the NLC algorithm, thereby limiting
its effectiveness as power increases. Conversely, the nonlinear
gain based on LDSP progressively amplifies, stemming from
more accurate nonlinear estimations. Our findings suggest
that NLC performance can be enhanced using LDSP, parti-
cularly in scenarios with apparent nonlinear effects. These
results highlight LDSP’s potential as a novel benchmark,
significantly aiding in the performance assessment of non-
linear algorithms.

Learned parameters analysis
To investigate the factors contributing to the perfor-

mance gain, this section focuses on the learned para-
meters obtained after the learning process. The analyses
focus on the single-channel transmission over 1600 km,
and similar conclusions are applicable to WDM trans-
missions. Figure 5a displays the LOFO estimations
throughout the learning process. It is observed that LDSP
achieves convergence after step 1, which involves CMA
training. The LOFO values remain stable during the
MMA training and MSE tracking processes, indicating the
slow-varying nature of LOFO.
Figure 5b showcases the bias parameters of the complex

BN module. The bias parameters are presented in the
frequency domain, revealing several peak values. It is
important to note that due to the sub-optimal nature of
DA and AD conversion, clock information may be
introduced into the signal, potentially leading to a
degradation in signal performance. However, the biases in
the BN module can be utilized for compensating clock
leakage effects. Moreover, since bias operations involve
simple addition operations that can be easily executed in
application-specific integrated circuits (ASIC), the
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computational complexity associated with biases is not
significant. The utilization of the learning algorithm in
LDSP enhances the capabilities of DSP systems, enabling
them to possess enhanced functionalities and adaptability.
In Fig. 5c, d, the CD taps for the X and Y polarizations

of the signal are depicted, respectively. The amplitude
response of the taps represents an all-pass filter, while the
phase response reflects the CD effects. In Fig. 5e–h, the
learned 2 × 2 MIMO taps are displayed. The amplitude
response exhibits an M-shaped filter characteristic, which
can be attributed to the system’s non-ideal system
response. Additionally, the MIMO taps compensate for
residual CD even after CD compensation, resulting in a
phase response that aligns with the CD compensation.
Importantly, these responses align with those observed in
traditional DSP, highlighting the high interpretability of
LDSP and its consistency with theoretical expectations.
Figure 6 illustrates the learned skew in the LDSP fra-

mework. Notably, Fig. 6c, f demonstrates the tracking of
skew changes, highlighting the robustness of LDSP in
handling IQ skew, where the skew of X and Y branch
converge to −0.5 and −1.0 ps, respectively. Traditional
DSP methods encounter difficulties when it comes to
compensating for IQ skew without introducing additional
complexity. To address IQ skew, techniques such as 4 × 2

MIMO or widely linear MIMO are often employed.
However, these techniques come with increased power
burdens and additional computational requirements. It is
important to note that the LDSP framework does not
include time recovery. Instead, LDSP is capable of
detecting and adjusting timing errors, as evidenced by the
results shown in Fig. 6a, b, d, e, where the time delay
exhibits a linear function at each branch. If we divide the
time series into several blocks as shown in Fig. 2., where
time space of each sample is Δt, then the whole time
series of an IQ branch can be represented by:

xðtÞ ¼
X

r

xrðt � rRΔtÞ ð4Þ

where xr is the r-th block, R is the sample number in each
block. If we use τr to compensate IQ skew at r-th block
with the sampling error, then the compensation proce-
dure in frequency domain can be presented by:

Y ðΩkÞ ¼
X

r

XrðΩkÞ expð�jΩkrRΔtÞ expð�jΩ0
kτrÞ

ð5Þ

where Ωk ¼ 2πk=RΔt reflecting the digital frequency and
Ω0

k is the digital frequency with biased sampling rate. To
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reduce the sampling rate error, the compensated signals
should be:

Y ðΩkÞ ¼
X

r

XrðΩkÞ expð�jΩ0
kðrRΔt þ bÞÞ ð6Þ

where b is a constant value. It is necessary to make Eq. (5)
and Eq. (6) equal, that is, for τr, it satisfies:

τr ¼ ðΔt � Δt0ÞRr þ b ð7Þ

where Δt � Δt0 is a slope of τr, representing the time
sampling error. The slopes of IQ skew during the processing
represent the digital sampling errors, while the bias of IQ
skew means the time delay. In this way, LDSP can find and
compensate the timing error using the IQ skew compensa-
tion module. In Fig. 6a, b, d, e, we estimate several slopes by
manually adjusting the sampling error from −33.2 ps to
17.4 ps before DSP. The values depicted in these figures
represent the estimated slopes at a 1.25× oversampling rate,
calculated according to Eq. (7). These estimates demonstrate
that the slopes are consistent with the corresponding
sampling errors. Notably, the time error remains consistent
across XI, XQ, YI, and YQ channels, owing to their shared
sampling clock. Despite this, we observe minor slope
discrepancies, within a ±0.05 ps range, for the same sampling
error. This variability in slopes across different sampling rate
errors is successfully detected by LDSP. By using the several
block of learned time delay values of LDSP, we can estimate
the timing error and build feedback to control the sampling
rate. Importantly, LDSP achieves this without the need for a
separate time recovery module, thereby optimizing the

utilization of DSP resources and showcasing its high
efficiency and robust signal compensation abilities.

Complexity analysis
It is well known that the processing of samples per

symbol determines the DSP complexity. In this part, we
test different processing rate, from 1.0 to 2.0 samples/
symbol. Note that due to the sample size changes with
different processing rate, the dynamic effects are also
changed, indicating that the LR need to be adjusted.
Typically, when using lower processing rate, one can use
higher LR to track the faster dynamic effects.
In order to determine the complexity of LDSP, it is

necessary to establish the definitions for block samples
and symbols. Let us denote the sampling rate, processed
block symbols, and mini-block symbols as r, n, and m,
respectively. Moreover, the block and mini-block samples
can be represented as N and M, where N is equal to 2rn
and M is equal to 2rm, considering the overlap-and-save
methods. The BPS test phase number is denoted as B.
Subsequently, the concrete representation of real multi-
pliers and adders can be observed in Fig. 7a. Assuming
that a block comprises k mini blocks, the complexity of
the multipliers and adders can be expressed as follows:

Multipliers ¼ 8N log2ðNÞþ28Nþk½8Mlog2ðMÞþ16Mþ4mB�
n

Adders ¼ 12N log2ðNÞþ34Nþk½12Mlog2ðMÞþ10Mþ6mB�
n

ð8Þ

The utilization of the error backpropagation approach
introduces an additional complexity, doubling the
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complexity depicted in Eq. (8). Within the context of this
study, the block symbol is set at 512, while the mini block
symbol is defined as 64. The BPS employs 8 test phases.
By incorporating the sample rate and symbol number into
Eq. (9), the complexity and performance outcomes, as a
function of the processing rate, are presented in Fig. 7b.
The left axis of Fig. 7b illustrates the BER performance

for single-channel 1600 km transmission with varying
sampling rates. It can be observed that an increased
processing rate correlates with an improved BER perfor-
mance. Nonetheless, the improvements achieved by ele-
vating the processing rate are relatively marginal,
suggesting that LDSP exhibits a limited sensitivity to
changes in the sampling rate.
The Q factor and BER performance loss is marked

compared to 2 samples per symbol in Fig. 7b. LDSP
demonstrates remarkable robustness in BER even when
operated at the symbol rate, as evidenced by a minimal
decrease of less than 0.17 dB in Q factor. Notably, the
complexity of LDSP can be diminished by reducing the
processing rate, as illustrated on the right axis of Fig. 7b.
Processing at the symbol rate leads to a substantial 48%
decrease in complexity compared to a processing rate of
2 samples per symbol, reducing the number of multipliers
from 2272 to 1088. This emphasizes the cost-effectiveness
of the LDSP learning framework, which enables optimal
performance while keeping complexity within manageable
limits.

Discussion
This paper presents an experimental demonstration of

the significant performance improvements and compu-
tational savings achieved by integrating traditional DSP
algorithms into a DL framework. The comparative ana-
lysis of performance is conducted post-optimization of
hyperparameters for the traditional DSP. By leveraging DL
optimization techniques, DSP algorithms can effectively
compensate for various channel distortions, including
clock leakage, skew tracking, and even time recovery, with

minimal additional complexity. The optimized parameter
configurations obtained through DL optimization also
provide valuable insights into the linear effects in the
transmission system. LDSP retains the traditional block-
design DSP structure while utilizing gradients as inherent
feedback paths, facilitating interconnections among DSP
modules, and leading to higher performance gains. The
learnable framework of LDSP enables optimal perfor-
mance within limited complexity constraints. Notably, the
LDSP module achieves symbol-rate processing with neg-
ligible performance costs. Due to the DL framework, the
LDSP is compatible with DL structures and can be
extended to incorporate learnable perspectives for non-
linear compensation in the future. The LDSP could
emerge as a new and highly efficient benchmark for lin-
earity compensation, generating significant interest across
various domains of nonlinear compensations and beyond.

Materials and methods
Experiments setup
The experiment setup is shown in Fig. 2a. At the

transmitter side, an 80 GSa/s arbitrary waveform gen-
erator (AWG) with 17 GHz bandwidth is used to generate
50-GBaud 16-QAM symbols shaped by squared raised
cosine filter with roll-off factor of 0.1. The electrical
waveforms first go through a 40 GHz bandwidth coherent
driver modulator (CDM) to modulate the optical signals.
The modulated optical waveform is amplified using
erbium-doped fiber amplifiers (EDFA) with 5.0 dB noise
figure and launched into the fiber link. The fiber laser with
linewidth around 100 kHz is used at both transmitter and
receiver side. An EDFA module is used following with the
fiber transmission to compensate for the fiber loss
incurred over all the spans. The fiber spans approximately
80 km, and a single-channel transmission utilizes a series
of 20 spans, totaling 1600 km. In wavelength division
multiplexing (WDM) long-haul transmission, the channel
under test (CUT) is produced by the AWG. Concurrently,
additional interference channels originate from amplified
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spontaneous emission (ASE) noises. The CUT is centrally
located among 21 WDM channels, traversing a 1600 km
optical fiber link in this work. After fiber link transmis-
sion, the optical waveforms are coherently detected using
40-GHz bandwidth integrated coherent receiver (ICR).
And the signals are sampled by a 100 GSa/s digital
oscilloscope with 30-GHz electrical bandwidth.

Perturbation nonlinear compensation
The PNC employed in this paper is originated from the

first-order perturbation of the nonlinear Schrödinger
equation. When complete CD is compensated by the
receiver DSP, the nonlinear perturbation terms of X
polarization can be represented by17–19,40:

ΔAX ¼
X

m;n

P3=2
0 ðAn;XA

�
mþnAm;X þ An;YA

�
mþn;YAm;XÞCM;N ðm; nÞ

ð9Þ
where An,X and An,Y represent the transmitted symbols for
X and Y polarizations, respectively, indexed by n. The P0
denotes the launch power, and CM,N(m, n) is the matrix of
first-order perturbation coefficients, where the size is M ´
N, which can be optimized with respect to the link
parameters. The nonlinear perturbation terms for Y
polarization can be obtained from Eq. (9), substituting X
indices with Y indices.

To compensate for the nonlinear interactions using
PNC in the receiver side, it is necessary to pre-determine
the products of three symbols. In this paper, we replace
the transmitted symbols by the received symbols after
DSP and decision. The coefficient matrix is optimized via
machine learning techniques, utilizing a training set of
known symbols and the given link parameters. Following
the computation of perturbation terms as Eq. (9), PNC
effectively removes nonlinear impairments by:

ÂX ¼ ~AX � ΔAX ð10Þ
where the ÂX and ~AX are PNC output and input symbols,
respectively.

The size of the coefficient matrix for PNC significantly
influences both the effectiveness of the compensation
and the system complexity. Essentially, the matrix size
indicates the capacity to capture the time correlation of
nonlinearities within the system. Thus, enlarging the
coefficient matrix size tends to enhance nonlinear
compensation performance, until it sufficiently encom-
passes the majority of nonlinear time correlations.
Beyond this point, further increases in matrix size do
not yield performance improvements. The testing of
PNC performance with varying matrix sizes, as depicted
in the Fig. 8, provides valuable insights for optimizing
the PNC system, particularly in single-channel 1600 km

transmission scenarios. The results indicate that the
optimal number of rows in the matrix for this specific
transmission length is 160. Beyond this point, increasing
the matrix size does not yield additional performance
improvements.
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