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End-to-End Learning for 100G-PON Based on
Noise Adaptation Network
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Abstract—End-to-end learning is a promising solution to real-
ize the optimal performance of optical communication systems.
By replacing the independent signal processing modules in the
transmitter and receiver with deep neural networks, end-to-end
system optimization can be achieved via training the neural net-
works together on a differentiable channel. In this paper, a noise
adaptation network for channel modeling is proposed to simulate
channel response and the impact of channel noise on transmitted
signals. The structure of the noise adaptation network is multi-scale
deep neural network (MscaleDNN), which can better characterize
the channel at different frequencies. Based on the noise adapta-
tion network, a novel end-to-end learning framework is further
designed. Within the framework, memory buffer technology and
constraint loss are introduced to significantly enhance the efficiency
and performance of end-to-end learning. Experimental demonstra-
tion of the proposed end-to-end learning scheme is performed on
a 100G passive optical network (PON) system based on intensity
modulation and direct detection. The results indicate that, com-
pared to the optimized Volterra non-linear equalization at the
receiver and the joint equalization achieved by indirect approach,
end-to-end optimization improves receiver sensitivity by 0.8 dB and
1.2 dB, respectively, and achieves a power budget of 31.4 dB. In
particular, the advantages of the end-to-end learning are even more
pronounced in the case of higher received optical power.

Index Terms—Constraint loss, end-to-end learning, memory
buffer, MscaleDNN, noise adaptation network, PON.

I. INTRODUCTION

S TIMULATED by rapid traffic growth in the access and
short-reach networks, single-wavelength data rate of pas-

sive optical network (PON) is moving from 25 Gbps to 50 Gbps
and 100 Gbps. Nowadays, 50G-PON has been standardized by
ITU-T and IEEE [1], [2], [3]. The 50G-PON physical layer
keeps the intensity modulation and direct detection (IM/DD)
scheme and employs digital signal processing (DSP) for the first
time. The standardization of 100G-PON is still on the way, and
research on the key technologies of 100G-PON has been widely
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investigated [4], [5], [6], [7], [8], [9], [10]. Compared to com-
plex and expensive coherent architecture, the implementation of
100G-PON prefers low-cost IM/DD, especially in the O-band.
The main challenges for high-speed IM/DD PON system are
bandwidth limitation, channel impairments and low receiver
sensitivity, which means that it is hard to meet the performance
requirement such as an optical power budget of at least 29 dB
[11], [12].

In recent years, as the in-depth research of machine learn-
ing technique in optical communication systems, end-to-end
learning has earned a lot of attention and is regarded as a
promising way to improve the overall system performance [13],
[14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24],
[25]. In a conventional communication system, signal process-
ing modules at both transmitter and receiver are designed to
undertake individual tasks, such as encoding/decoding, modula-
tion/demodulation, pulse shaping, as well as equalization. This
block-wise approach allows each module to be analyzed and
optimized separately. However, it is difficult to ensure global
optimization of system performance when the channel model
becomes more complex.

End-to-end learning provides a feasible solution to this prob-
lem. Generally, it uses two neural networks as transmitter and
receiver to replace the independent signal processing modules.
The neural networks are trained on a specific-designed differen-
tiable channel model, which is a simulation of the real physical
channel. Through joint training of transmitter and receiver by
gradient-based algorithms, the system can achieve the best end-
to-end performance. The effect of end-to-end learning is highly
dependent on the accuracy of the differentiable channel model.
The closer the differentiable channel is to the real physical
channel, the better the end-to-end learning performance will be.
Some studies directly use theoretical formulas or known numer-
ical models of real physical channel to construct differentiable
channel [14], [15], [16], [17], [18]. However, in a real optical
communication system, the transfer function between the input
signal and the output signal is highly complex, making it chal-
lenging to be accurately modeled with mathematical equations.
Thus, generative adversarial network (GAN) [19], [20], [21],
long short-term memory network (LSTM) [22] and other deep
learning methods are used to simulate channel characteristics
through a data-driven approach. These schemes circumvent the
restriction on the need for prior knowledge of practical channel
model in end-to-end learning. The neural network responsible
for modeling channel becomes part of the end-to-end learning.
It can be alternately trained with the neural networks in the

0733-8724 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on January 09,2025 at 08:49:39 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0009-0000-5064-0514
https://orcid.org/0000-0003-4657-1442
https://orcid.org/0009-0004-0794-620X
https://orcid.org/0009-0007-7887-6394
https://orcid.org/0000-0002-6168-2688
https://orcid.org/0000-0002-6039-9063
mailto:xuyongxin@penalty -@M sjtu.edu.cn
mailto:xuyongxin@penalty -@M sjtu.edu.cn
mailto:luyaohuang@sjtu.edu.cn
mailto:sjtujwq@sjtu.edu.cn
mailto:guanxiaokai@penalty -@M sjtu.edu.cn
mailto:guanxiaokai@penalty -@M sjtu.edu.cn
mailto:wshu@sjtu.edu.cn
mailto:lilinyi@sjtu.edu.cn
https://doi.org/10.1109/JLT.2023.3341495


XU et al.: END-TO-END LEARNING FOR 100G-PON BASED ON NOISE ADAPTATION NETWORK 2329

transmitter and receiver until the loss functions of all networks
converge, or it can be pre-trained independently and used as a
fixed channel. There are also some end-to-end learning schemes
choosing to optimize the transmitter and receiver without mod-
eling the channel, for example, by reinforcement learning [23],
cubature Kalman filtering [24] or gradient estimation [25], but
they are more difficult to train due to the inaccurate and unstable
feedback gradient flow.

However, the majority of current verifications of end-to-end
learning are based on simulated communication systems, where
many techniques may not be helpful and some aspects are easy to
be overlooked. When carrying out end-to-end learning for a prac-
tical optical communication system in an online fashion, training
the channel model becomes a great challenge. The channel state
may be affected by the environment and undergo some changes,
causing the pre-trained channel network to lose its match. Also,
frequent data acquisition from the practical system during online
training is time-consuming, as the data has to be collected from
the oscilloscope, and synchronization, resampling and other
operations are required. Although the validity of GAN and
LSTM in channel modeling has been verified [26], [27], their
network structures hinder the training efficiency. Both GAN and
LSTM consume plenty of time to train. Besides, the design of
neural networks in transmitter and receiver is also critical for
end-to-end performance. A neural network with weak fitting
ability cannot thoroughly compensate for channel impairments.
Therefore, careful design of neural networks used for channel
modeling, transmitter, and receiver is essential to achieve higher
efficiency and performance in end-to-end learning.

Considering that the channel output is a random variable, we
propose a noise adaptation network to model channel response
and the impact of channel noise on transmitted signals based on
the principle of maximum likelihood estimation. The structure
of noise adaptation network adopts the feedforward multi-scale
deep neural network (MscaleDNN) [28]. It is designed based
on Frequency Principle [29] (the principle reveals the training
dynamics of neural networks) and possesses the capability to
effectively learn the response at different frequencies. Based on
the noise adaptation network, a novel end-to-end learning frame-
work is built. Through alternately training the noise adaptation
network with the neural networks in transmitter and receiver,
noise adaptation network gradually achieves an accurate approx-
imation of the real physical channel and the neural networks
in transmitter and receiver guide system performance to the
optimum. In addition, to further enhance the training efficiency
and performance, memory buffer technology [30] and constraint
loss are introduced into the framework. Memory buffer can
reduce the number of channel data requests from the practical
system and accelerate training process. Constraint loss forces the
transmitter to take on more signal processing tasks, thus ensuring
a simple neural network in the receiver. It is more suitable for
the DSP complexity requirements of PON.

The proposed end-to-end learning framework is applied to
a 100Gbps O-band IM/DD PON experimental system with a
10-GHz Mach-Zehnder modulator (MZM). MscaleDNN is used
for the neural network in the transmitter and a single layer of
fully connected neural network (i.e., feed-forward equalizer,

FFE) for the receiver. After online training, experimental re-
sults demonstrate that the end-to-end learning framework has a
fast convergence rate. The noise adaptation network accurately
models the experimental channel, enabling the transmitter and
receiver neural networks to provide clean compensation for both
linear and nonlinear impairments in the channel. Compared
to the optimized traditional receiver-only Volterra non-linear
equalization (VNLE) scheme and the joint equalization scheme
achieved by indirect method [33], our approach improves re-
ceiver sensitivity by 0.8 dB and 1.2 dB, respectively, while
providing even more significant gains at higher received optical
powers. To the best of our knowledge, this is the first experi-
mental system of 100G-PON that employs end-to-end learning.

The rest of this paper is organized as follows. Firstly, the basic
principles of noise adaptation network for channel modeling
are introduced in Section II. Then, the principle and imple-
mentation process of proposed end-to-end learning framework
are presented in Section III. Next, in Section IV, experimental
studies and results are described. Finally, a conclusion is given
in Section V.

II. NOISE ADAPTATION NETWORK FOR CHANNEL MODELING

In the end-to-end learning framework for optical communi-
cation systems, the construction of an accurate differentiable
channel plays a key role in performing gradient–based op-
timization of transmitter and receiver. Considering that the
real physical channel output signal is a random variable, a
noise adaptation network is designed for modeling the channel
from the perspective of parameter estimation through maximum
likelihood estimation. Specifically, assuming that the channel
input is x ∈ Rm×sps, the output is y ∈ Rsps, and y follows
a sps-dimensional Gaussian distribution with mean µ ∈ Rsps

and covariance matrix Σ ∈ Rsps×sps, the probability density
function (PDF) of y is

f (y) =
1

(2π)
sps
2 |Σ| 12

exp

{
−1

2

[
(y − µ)TΣ−1 (y − µ)

]}
,

(1)
where m is the number of symbols contained in the input signal
x, sps is the number of samples per symbol, and y represents
the output signal corresponding to the center position of x.
Therefore, the noise adaptation network aims to estimate the
mean µ and covariance matrix Σ of the output signal y. It
characterizes the real physical channel, including imitating the
channel frequency response and modeling the impact of channel
noise on the transmitted signal.

According to the type of noise in the channel, two noise
adaptation network architectures are designed. The first one is
for the case where the noise is signal-dependent, which is often
manifested as multiplicative noise. When such noise dominates,
the network architecture is shown in Fig. 1. It consists of a
mean network, denoted as h, and a variance network, denoted
as s. They take the signal x ∈ Rm×sps as input and produce
corresponding outputs, h(x) ∈ Rspsand s(x) ∈ Rsps, respec-
tively. In the training mode, the noise adaptation network is
trained based on the maximum log-likelihood function method.
Let {(x1,y1), (x2,y2), . . . , (xB ,yB)} denote the B groups
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Fig. 1. Architecture of noise adaptation network when the noise is signal-
dependent.

Fig. 2. Architecture of noise adaptation network when the noise is signal-
independent.

of data and labels sampled from the training dataset. Then the
maximized log-likelihood function can be expressed as follows:

argmax
h,s

B∑
i=1

ln

[
1

(2π)
sps
2 |Σi|

1
2

exp

{
−1

2

[
(yi − µi)

TΣ−1
i (yi − µi)

]}]

= argmax
h,s

B∑
i=1

[
−1

2

[
(yi − µi)

TΣ−1
i (yi − µi)

]

−sps

2
ln |Σi| − sps

2
ln 2π

]
, (2)

whereµi = h(xi),Σi = diag(s(xi)), and diag(·) denotes the
diagonalization of a vector. In the inference mode, mean network
h and variance network s together constitute the modeled chan-
nel, simulating the channel response to the input signal x and
the effect of channel noise on x, respectively. Therefore, The
output of the noise adaptation network is ŷ ∼ N(µ,Σ), i.e.,
sampled from the Gaussian distribution with mean µ = h(x)
and covariance matrix Σ = diag(s(x)).

Another type of noise is signal-independent, such as white
Gaussian noise, which is the most common situation in commu-
nication systems. When it dominates, the corresponding noise
adaptation network architecture can be simplified as Fig. 2, it
has only one mean network. In training mode, the maximized

Fig. 3. Architecture of MscaleDNN.

log-likelihood function can be expressed as follows:

argmax
h

B∑
i=1

ln

[
1

(2π)
sps
2 |Σ| 12

exp

{
−1

2

[
(yi − µi)

TΣ−1 (yi − µi)
]}]

= argmax
h

B∑
i=1

[
−1

2

[
(yi − µi)

Tσ−2 (yi − µi)
]

−sps lnσ − sps

2
ln 2π

]
, (3)

where Σ = σ2 I , I denotes the unit matrix, σ2 is a parameter
to be estimated. When the training is completed, σ2 is calculated
on the full training dataset as follows:

σ2 =
1

n

n∑
i=1

||h (xi)− yi||2, (4)

where n is the size of the entire training dataset. Similarly, in
the inference mode, the output ŷ of the noise adaptation network
is also sampled from the Gaussian distribution with mean µ =
h(x) and covariance matrix Σ.

Unlike previous schemes that fit channel with normal fully
connected neural network, convolutional neural network or
LSTM, the noise adaptation network uses MscaleDNN as its
structure in order to balance the fitting ability and training cost.
MscaleDNN is a kind of network architecture designed to solve
high-frequency component learning problems according to the
Frequency Principle [29]. The principle reveals the dynamics of
the neural network training process and points out that deep
neural networks often fit target functions from low to high
frequencies, and they learn the low frequency content quickly
with good generalization error, but they will be inadequate when
learning high frequency content. Here the concept of frequency
is introduced by the Fourier transform of the input-output map-
ping of the neural network. For communication channel and
equalizer, they are also characterized by the response at different
frequencies in frequency domain. Therefore, when the mean
network of the noise adaptation network uses MscaleDNN to
fit the channel response, the channel features from low to high
frequencies can be well simulated. Similarly, neural network
equalizers using MscaleDNN can also compensate for responses
at different frequencies well.

The architecture of MscaleDNN is shown in Fig. 3, as a sum
of K subnetworks, in which each scale input goes through a
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Fig. 4. (a) The concrete structure of the subnetwork in MscaleDNN. (b) The
activation function φ(x).

subnetwork, α1, α2, . . . , αK are scale coefficients, usually set
αi = i or αi = 2i−1 . The concrete subnetwork structure is
a feedforward structure, containing a 1-D convolutional layer
and three linear layers as shown in Fig. 4. Conv1d Layer has
M1 filters with the size of m× sps, they convolve the input
αix ∈ Rm×sps and pass the result to the subsequent linear
layers. The outputs of Linear Layer-1 and Linear Layer-2 need to
be activated with the activation function φ (x) = (x− 0)2+ −
3(x− 1)2+ + 3(x− 2)2+ − (x− 3)2+, where x+ = max{x, 0}
[28]. Linear Layer-1 and Linear Layer-2 have M2, M3 neurons
respectively. Finally, the output ŷ(i) is obtained.

It is worth emphasizing that in the experiments, the approx-
imation error, generalization error and optimization error [31],
[32] are always present when training noise adaptation network.
As a result, the estimation of noise variance tends to be large
and the features of channel may be masked. To overcome these
errors, we truncate the output result. When the noise adaptation
network is in the inference mode, the network output is sampled
from the truncated Gaussian distribution (in the training mode,
the Gaussian distribution is still used), i.e., the network output
ŷ ∼ TN (µ,Σ,a, b) and the PDF of ŷ is as follows:

f (ŷ,µ,Σ,a, b)

=
exp

{
− 1

2

[
(ŷ − µ)TΣ−1 (ŷ − µ)

]}
∫ba exp

{
− 1

2

[
(ŷ − µ)TΣ−1 (ŷ − µ)

]}
dy

I[a,b] (ŷ) . (5)

where [a, b] is truncation interval, I[a,b](ŷ) is indicator func-
tion, I[a,b] (ŷ) = 1 if a ≤ ŷ ≤ b. In this paper, we set a =
µ− 3Σdd and b = µ+ 3Σdd. The Σdd is a column vector

composed of the main diagonal elements of Σ.

Fig. 5. End-to-end learning framework for IM/DD PON.

III. PRINCIPLES OF END-TO-END LEARNING

Generally, in an end-to-end communication system, two sym-
metric neural networks are used as transmitter and receiver.
which are regarded as an autoencoder (AE) structure. And then
they are trained on a differentiable channel, usually modeled
with a neural network, by gradient-based algorithms. During
the training process, some schemes alternately train the channel
network with the networks in transmitter and receiver. Others
pre-train the channel network and keep it fixed, then go on to
train the networks in transmitter and receiver. The former enables
better learning of channel characteristics through continuous
dynamic learning.

In this work, for an IM/DD PON system, we employ the noise
adaptation network to model the IM/DD system and provide a
differentiable channel, i.e., noise adaptation channel, for end-to-
end training. MscaleDNN is used at the transmitter and a single-
layer fully connected neural network (i.e., FFE) is used at the
receiver. Noise adaptation channel is trained alternately with the
neural networks in transmitter and receiver. Moreover, constraint
loss and memory buffer are designed to further improve training
performance and efficiency.

A. End-to-End Learning Framework

The end-to-end learning framework is shown as Fig. 5.
Starting from the transmitter, the transmitted bit sequence
Tbits is first modulated into PAM symbols Tsymbols with
amplitude [-3,-11,3]. After power normalization, a slid-
ing window is applied to Tsymbols to construct the t-th

input st = [Tsymbols(t− m−1
2 ), . . . , Tsymbols(t+

m−1
2 )]

T ∈
Rm for TxNN with a window size of m. TxNN is respon-
sible for pulse shaping and pre-equalization. Its structure is
the same as MscaleDNN presented in Figs. 3 and 4, except
that TxNN’s input data has a dimension of m× 1 rather
than m× sps. The t-th output of TxNN is denoted by et ∈
Rsps, and all outputs constitute the transmitter signal Tsamples

and the power of Tsamples is normalized. Noise adaptation
channel simulates the transmission process of Tsamples in
the IMDD system. The t-th input of Noise adaptation chan-
nel is xt = [Tsamples(t− m−1

2 ), . . . , Tsamples(t+
m−1
2 )]

T ∈
Rm×sps. The corresponding output ŷt ∈ Rsps is sampled from
the truncated normal distribution, as shown in (5) with mean
µ and covariance matrix Σ estimated according to (2) or (3)
and (4). All outputs constitute the receiver signal R̂samples.
At the receiver, R̂samples is recovered to modulated symbols
by RxNN, noted as Esymbols. RxNN is a single-layer fully
connected neural network. The t-th input of RxNN is y′

t =
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[R̂samples(t− m′−1
2 ), . . . , R̂samples(t+

m′−1
2 )]

T ∈ Rm′×sps.
The output is s′t ∈ R. Through PAM demodulation, Esymbols

is finally mapped to bit sequence Rbits.
In this framework, noise adaptation channel is trained al-

ternately with TxNN and RxNN through stochastic gradient
descent. The task of noise adaptation channel is to learn the
mean value µ and covariance matrix Σ of the output signal in
the IM/DD system according to (2) or (3) and (4) with the data
Tsamples and Rsamples. Rsamples is obtained by performing
synchronization and resampling on the signal acquired from the
oscilloscope. For TxNN and RxNN, the task is to minimize the
joint mean square error (MSE) loss LossTR, which is defined
as follows:

LossTR = Loss1 + Loss2 (6)

where Loss1 is the MSE loss between Tsymbols and Esymbols.It
can be expressed as:

Loss1 =
1

n

n∑
i=1

||Tsymbols (i)− Esymbols(i)||2 (7)

The Loss2 is the MSE loss between Tsymbols and R̂samples.
It can be expressed as:

Loss2 =
1

n

n∑
i=1

||Tsymbols (i)− R̂symbols(i)||2 (8)

R̂symbols (i) =
1

sps

sps∑
k=1

R̂samples (k, i) (9)

where n is the size of Tsymbols.
The Loss2 is a constraint loss, similar to the constraints

imposed on the target solution in the optimization area. The
Loss2 forces the TxNN to take on more signal processing tasks
in end-to-end learning, thus ensuring that the RxNN can use
a simple FFE structure, which is more in line with the DSP
complexity requirements of PON. Loss1 and Loss2 have the
same physical meaning, so for simplicity, their weights in the
overall loss LossTR are considered to be equal.

B. Memory Buffer-Assisted Noise Adaptation
Channel Training

Modeling channel with neural network requires a large
amount of input and output data from the real physical channel.
In the previous alternate training approach, each time the training
of the channel network is started, the neural network in the
transmitter is fixed. Then the different sequences of random
bits are continuously sent to generate a sufficient amount of
channel training data. Since the neural network in the transmitter
is fixed, this approach actually leads to a single distribution of
channel input data. It does not allow the channel network to be
more generalized. What’s more, acquiring channel output data
from the experimental system frequently is time-consuming,
because the data collected from the oscilloscope still needs to
be synchronized and resampled.

Therefore, memory buffer-assisted training mechanism is in-
troduced to improve the training performance and accelerate the

Fig. 6. Memory buffer-assisted noise adaptation channel training end-to-end
learning.

training process of the channel network. As shown in Fig. 6,
we first save the input signal Tsamples and the output signal
Rsamples generated by the IM/DD system into memory buffer.
When starting to train the channel network, N sets of signals are
randomly sampled from memory buffer to construct the training
dataset. With a sliding window of size m, we can obtain n pairs
of training data x ∈ Rm×sps and label y ∈ Rsps from each set
of signals. ThenN∗n pairs of data and labels are used to train the
noise adaptation channel through supervised learning. The sim-
ple mechanism not only enables a richer distribution of training
data for the channel network, allowing better generalization of
the noise adaptation channel, but also saves end-to-end training
time by avoiding frequent data acquisition from real physical
channel.

C. End-to-End Training Process

The detailed training process of end-to-end learning based
on the noise adaptation network is summarized in Algorithm 1,
including initialization, main loop and finetune RxNN in the
IM/DD system. In the main loop, noise adaptation channel is
first trained in inner loop-1, then TxNN and RxNN are trained
in inner loop-2. The two inner loops are repeated until the loss
functions converge. Finally, to compensate for the difference
between the modeled channel and the real physical channel for
better end-to-end learning performance, RxNN is finetuned with
the transmitted and received signals from IM/DD system. Adam
optimizer is used in the training process.

At the inner loop-1, we need acquire data from the exper-
imental system to train the noise adaptation channel. Under
each main loop, inner loop-1 is executed ChEpoch times. Each
time, random bits are generated and mapped to PAM-4 symbols,
and after processing by TxNN and power normalization, we
obtainTsamples. Then we loadTsamples into AWG. After 20-km
transmission of IM/DD system, we collect signals from the
oscilloscope, and perform synchronization and resampling to
obtain Rsamples. Finally, we save a set of training samples
[Tsamples, Rsamples] into the memory buffer.

In practical implementation, we can pre-train the TxNN, noise
adaptation channel and RxNN according to the specified channel
conditions (including signal rate, fiber distance, transmission
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Algorithm 1: End-to-End Learning Based on Noise Adap-
tation Network.

1: Select the type of noise adaptation network.
2: Randomly initialize noise adaptation channel Ch,s,

TxNN T θ , RxNN Rw and memory buffer.
3: Main loop:
4: for i = 1 : MainEpoch
5: Inner loop-1:
6: for j = 1 : ChEpoch
7: Keep T θ and Rw fixed, send random bit sequence.
8: Save the transmitted signal T samples and

received signal Rsamples to memory buffer.
9: Sample N sets of T samples and Rsamples,

construct training dataset. Update Ch,s according
to (2) or (3) and (4).

10: endfor
11: Inner loop-2:
12: for k = 1 : TREpoch
13: Keep Ch,s fixed, set to inference mode and its

output ŷ ∼ TN (µ,Σ,a, b).
14: Send random bit sequence, construct training

dataset with T symbols, R̂samples and
Esymbols.

15: Update T θ and Rw by minimizing the loss
function defined as (6).

16: endfor
17: endfor
18: Finetune RxNN in IM/DD system:
19: for l = 1 : FEpoch
20: Keep T θ fixed, send random bit sequences.
21: Construct training dataset with IM/DD system

output signal Rsamples and T symbols.
22: Update Rw by minimizing the loss function

defined as (7).
23: endfor

power, etc.). Then update the TxNN and RxNN by periodically
tracking the channel state with noise adaptation channel. Due
to the memory buffer mechanism, only a small number of
training samples are needed. Another application is to perform
end-to-end learning at the optical back-to-back scenario so that
the TxNN can compensate impairments of OLT transmitter and
ONU receiver through constraint loss. Then each ONU trains a
low-complexity RxNN (FFE) independently to compensate for
residual impairments of devices and the impairments introduced
by O-band channel transmission.

IV. EXPERIMENTAL VERIFICATION AND RESULTS

A. Experimental Setup

The end-to-end learning algorithm is evaluated in the 100 Gb/s
PAM-4 IM/DD transmission system operating at the O-band.
Two typical experimental system architectures with equalizers
are shown in Fig. 7(a) and (b). The former is a receiver-only
equalization scheme. The latter is a joint equalization scheme

Fig. 7. 100 Gb/s PAM-4 IM/DD transmission system setup of (a) receiver-
only equalization, (b) joint equalization in the indirect way and (c) end-to-end
learning.

implemented in an indirect way [31], which means that the
equalizer trained at the receiver is first put on the transmitter
and then a new equalizer is trained at the receiver. In Fig. 7(a),
the random bits are generated and mapped to 50 GBaud PAM-4
symbols firstly. After pulse shaping is performed by a root
raised cosine (RRC) filter with roll-off factor of 0.4 (traversal
optimization from 0.1 to 1 with interval of 0.1), the digital signal
is converted to the analog signal by a Keysight M8194A arbitrary
waveform generator (AWG) with the sampling rate of 120 GSa/s
and output voltage amplitude of 200 mV. The signal from AWG
is amplified by a 23-dB electrical amplifier (EA), then modulated
by a 10-GHz Mach–Zehnder modulator (MZM). Meanwhile, the
laser from a 1310 nm directly modulated laser (DML) is injected
to the MZM biased at its quadrature point. A semiconductor
optical amplifier (SOA) with a noise figure of 7.5 dB is followed
to control the optical launch power. The launch power is set to
12dBm for better power budget. After 20-km standard single
mode fiber (SSMF) transmission, the power of the received
signal is adjusted by a variable optical attenuator (VOA). Then
the signal is detected by a 30-GHz avalanche photodiode (APD).
Finally, the signal is extracted by a Tektronix digital storage
oscilloscope (DSO) with a 33 GHz bandwidth and 100 GSa/s
sampling rate for subsequent offline DSP, including synchro-
nization, resampling to 2 sps, equalization, symbol decision and
PAM demapping. Half-symbol-spaced FFE, decision feedback
equalizer (DFE) and VNLE are used for equalization. Because
half-symbol-spaced equalizers are no sensitivity to timing phase
and have superior performance in most cases over their symbol-
spaced counterparts. Fig. 8 shows the optical back-to-back fre-
quency response of experimental system measured by a Vector
Network Analyzer (VNA). The end-to-end 3-dB bandwidth is
about 9.578 GHz and the 10-dB bandwidth is about 22.405 GHz.
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Fig. 8. Optical back-to-back frequency response of the 100 Gb/s PAM-4
IM/DD transmission system.

TABLE I
NETWORK STRUCTURE PARAMETERS OF MSCALEDNN

In Fig. 7(b), we first train a half-symbol-spaced VNLE at the
receiver with the same structure as shown in Fig. 7(a). But its
output is 2 sps and it uses transmitted signal after pulse shaping
as the training label. Then VNLE is moved to the transmitter and
acts as a pre-equalizer. Finally, to compensate for residual im-
pairments and obtain better performance, a half-symbol-spaced
FFE is trained as the post-equalizer.

Fig. 7(c) is the experimental system architecture of end-to-end
learning based on noise adaptation network. It complements
the detailed experimental setup for the framework shown in
Fig. 5. In the experiment, the transmitted signal is affected
by amplifier spontaneous emission (ASE) noise in SOA. After
being detected by APD, the shot noise, dark current noise and
thermal noise are involved. These noises are independent of each
other and have an additive effect on the output signal, which
can be simply modeled as signal-independent Gaussian noise.
Therefore, the noise adaptation network presented in Fig. 2 is
adopted to model experimental channel. The network structure
parameters of MscaleDNN used by TxNN and noise adaptation
channel are shown in Table I, and RxNN has 130 (65 symbols
× 2 sps) neurons.

The training process of Fig. 7(c) is described in Section III-C,
and parameters corresponding to each procedure are set in
Table II. At initialization, memory buffer is set as a queue and
can save up to 500 sets ofT samples andRsamples. In the early
stage of end-to-end training, the channel model is not accurate
and is not advisable to train TxNN and RxNN too many times.
So we make TREpoch grow linearly from 5 to 50 before the 6-th
main loop. For each completed main loop, 32768 random bits are

TABLE II
TRAINING PARAMETERS OF END-TO-END LEARNING

TABLE III
SETTINGS FOR DIFFERENT CASES

sent to calculate the BER and evaluate the current performance of
TxNN and RxNN. When the entire end-to-end training process
is finished, 3 sets of 32768 random bits are used for test and the
average BER is calculated to compare with other schemes.

B. Comparison of Different End-to-End Learning Cases

Firstly, we compare four different end-to-end learning cases
to demonstrate the effect of noise adaptation channel, constraint
loss and memory buffer.

The settings of four cases are shown in Table III. The first
case (case-1) is the proposed end-to-end learning framework
based on noise adaptation network. Compared with case-1, the
second case (case-2) takes a residual network (ResNet) shown
in Fig. 9 as TxNN and channel network. It uses exponential
linear unit (ELU) [34] as the activation function for better
performance. When the channel network models the channel,
it just considers the MSE loss between its output and the real
physical channel output, and does not model the impact of noise
on the signal. In the case-2, constraint loss and memory buffer
are not used, so the ChEpoch is set as 20 and the number of
bits sent is set as 16384 to allow the channel network to be
fully trained. However, ChEpoch cannot be set too large in these
cases. Because it will cause the channel network to overfit on a
single distribution of training dataset, leading to poor end-to-end
learning performance. In the third case (case-3), TxNN uses
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Fig. 9. Structure of ResNet used in case-2,3,4.

Fig. 10. Valid BER versus training epoch of four end-to-end learning cases at
ROP = −15 dBm.

MscaleDNN, and other settings are the same to case-2. In the
fourth case (case-4), ResNet is used as the network structure for
noise adaptation channel, and other settings are same to case-1.

At the received optical power (ROP) of −15 dBm, the varia-
tion of valid BER with training epoch (i.e., main loop) for the
four cases is shown in Fig. 10. From the comparison between
case-2 and case-3, as well as case-1 and case-4, it can be ob-
served that case-3 and case-1 can achieve lower BER levels than
case-2 and case-4, respectively. It indicates that MscaleDNN
has stronger fitting ability and can better compensate for high-
frequency components in channel response when it acts as the
structure of channel network and TxNN.

Furthermore, the valid BER of case-1 and case-4 drops to a
lower level than that of case-2 and case-3. Case-1 and case-4 take
noise adaptation network to simulate the mean and variance of
the output signal, which is closer to actual system conditions.
Meanwhile, the memory buffer provides random training data
with different distributions for channel training. It can reduce
the fitting bias and improve the generalization of the channel
network. In the early epochs of end-to-end training, the reduction
speed of valid BER in case-1 and case-4 is not as fast as that in
case-2 and case-3. This is because in case-1 and case-4 ChEpoch
is set to 4 while in case-2 and case-3 it is set to 20. So in the
early epochs, there is not enough data in the memory buffer
for training, resulting that the channel networks in case-1 and
case-4 are not trained too many times. The most time-consuming
part of the end-to-end learning, besides network training, is data
acquisition from experimental system. The larger the ChEpoch,

Fig. 11. (a) Training loss of noise adaptation channel versus training epoch
and (b) valid BER of end-to-end experimental system versus training epoch and
finetuning epoch at ROP = −15 dBm.

the longer the required training time. For case-2 and case-3, the
total size of samples acquired from the communication system
is MainEpoch × 20 × 16384 (8192 symbols × 2sps), while for
case-1 and case-4, it reduces to MainEpoch × 4 × 8192 (4096
symbols × 2sps). By introducing memory buffer, we can reuse
the channel data and reduce the training time.

Therefore, by comparing different cases, we adopt
MscaleDNN as the TxNN and channel network structure with
training strategies such as noise adaptation channel, memory
buffer and constraint loss.

C. Comparison Between End-to-End Learning and Other
Equalization Schemes

Next, the end-to-end learning based on noise adaptation net-
work is compared with two equalization schemes shown in
Fig. 7(a) and (b).

The noise adaptation channel, TxNN and RxNN are trained
according to the procedure in Section III-C. At ROP = −15
dBm, the training loss of noise adaptation channel is shown in
Fig. 11(a). The valid BER of experimental system with TxNN
and RxNN is shown in Fig. 11(b). In Fig. 11(a), it can be seen that
the channel loss decreases rapidly and the convergence process
is smooth with no great fluctuations in the curve, which is the
benefit of the memory buffer-assisted noise adaptation channel
training. In Fig. 11(b), the first 150 epochs are used to execute
the main loop, and the last 50 epochs are for finetuning RxNN.
According to the results, the valid BER in the latter stage is not
much lower than the previous stage. It implies that the noise
adaptation channel is an accurate simulation of the real physical
signal, so there are not many differences to be compensated by
finetuning RxNN.

Fig. 12 shows the power spectrum of the output signal on
the noise adaptation channel and the real physical channel after
end-to-end training is completed at ROP = -15 dBm. The power
spectrum is flat because the signal is first preprocessed by TxNN.
It compensates for the high frequency fading in the channel
spectrum. The noise adaptation channel fits the real physical
channel very well when the frequency range is 0∼30 GHz, while
the frequencies above 30 GHz lead to large differences in the
power spectrum. This is because the corresponding amplitudes
are extremely small at high frequencies. It is more than 40 dB
smaller than that at low frequencies, which means that there are
few useful signal components and mostly noise components.
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Fig. 12. Power spectrum of the output signal on the noise adaptation channel
and the real physical channel at ROP = −15 dBm.

Fig. 13. (a) BER comparison of the three schemes under different ROPs,
(b) eye diagram (sps = 2) of the real physical channel output signal in the
end-to-end learning scheme at ROP = −15 dBm.

Fig. 13(a) shows the BER performance comparison of the
three schemes at different ROPs. In the receiver-only equal-
ization scheme, the tap coefficients of FFE, DFE and VNLE
are updated through least mean square (LMS) algorithm. The
16384 transmitted symbols are used for training. FFE with a
memory length of 130 is trained for 25 epochs at the learning
rate of 0.005. DFE with a feedforward memory length of 130
and a feedback memory length of 25 is trained for 50 epochs at
the learning rate of 0.001. The 1st, 2nd and 3rd order memory
lengths of VNLE are (258,26,10), which are obtained by greedy
optimization algorithm from the (11,1) to (262,30,14). VNLE is
trained for 50 epochs at the learning rate of 0.005. “VNLE-Tx
+ FFE-Rx” denotes the joint equalization scheme implemented
in the indirect way. The BER of all schemes is averaged over
3 sets of transmitted symbols with a length of 16384 to avoid
accidental biases.

From Fig. 13(a), it can be observed that the BER performance
of FFE and DFE is similar. This is because DFE introduces feed-
back filter to compensate for the zeros of transfer function. While
in O-band transmission, the signal is not affected by dispersion,
the power spectrum does not have zeros after direct detection, so

DFE is not better than FFE. Considering that there are not only
linear impairments such as band-limit in the system, but also
non-linear impairments such as MZM and SOA nonlinearities,
nonlinear equalizers are needed to compensate both of them.
Therefore, VNLE and VNLE-Tx + FFE-Rx cause the BER
to be further reduced. For VNLE-Tx + FFE-Rx, since VNLE
cannot compensate for system impairments clearly and channel
conditions vary slightly over time, the equalization capability
decreases when a pre-trained VNLE is placed at the transmitter.
Although another FFE is trained at the receiver to compensate
for residual impairments, it is not as good as using VNLE only
at the receiver. Compared to VNLE and VNLE-Tx + FFE-Rx,
the end-to-end learning improves the receiver sensitivity by 0.8
dB and 1.2 dB, respectively, at the threshold of BER = 1e-2.
The advantage of end-to-end learning is more obvious in the
case of higher ROP, where the factors limiting the system are
linear impairments and non-linear impairments. A near-global
optimal signal processing scheme can be found to restore the
signal through training on an accurate channel network model.
However, at low ROP, the limiting factor for the system is noise,
which cannot be compensated by equalization, so all the schemes
become less different at low ROP.

Fig. 13(b) shows the eye diagram of the real physical channel
output signal in the end-to-end learning scheme at ROP = −15
dBm. The eye diagram is wide open and clear. This indicates
that TxNN compensates well for the vast majority of signal
impairments under the control of the constrained loss, so that
the compensation of residual system impairments can be ac-
complished by using a simple FFE as the RxNN. It is more
suitable for PON system’s demand for low-complexity DSP in
ONUs.

Generalization is necessary for end-to-end learning. Since
neural network-based modeling is data-driven, generalization
can be achieved by modifying the training method and adding
training data from different scenarios. In the proposed noise
adaptation network architecture, we can collect signal datasets
of different configurations and add a vector to denote channel
configuration. Then signal vector and corresponding configura-
tion vector are embedded together into the network for training.
Finally, the output signal under expected configuration will
be obtained. It will avoid repeatedly training different channel
networks in the PON system.

V. CONCLUSION

In this paper, a noise adaptation network to model channel
response and the impact of channel noise on transmitted signals
is proposed according to the principle of maximum likelihood
estimation. It takes MscaleDNN as the network structure, which
can better model the channel characteristics at different fre-
quencies. Based on the noise adaptation network, we design
a novel end-to-end learning framework and introduce memory
buffer technology and constraint loss to enhance training effi-
ciency and performance. The end-to-end learning framework
is validated by a 100Gbps O-band IM/DD PON experimental
system. After online training, the experimental results show that,
noise adaptive network can achieve accurate modeling of real
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physical channel and the end-to-end learning framework has a
fast convergence rate. Compared with the optimized traditional
receiver-only VNLE scheme and the joint equalization scheme
implemented by the indirect method, the receiver sensitivity
is improved by 0.8 dB and 1.2 dB, respectively, correspond-
ing to a 31.4-dB loss budget. For future work, the content
of end-to-end optimization will be further extended, such as
geometric and probabilistic shaping at higher order modulation.
The channel configuration parameters are considered to be em-
bedded into the input of the neural network to enhance gener-
alization ability. Meanwhile, the complexity of neural network
will be further optimized by pruning to meet practical applica-
tions. Except for PON, the end-to-end learning framework can
also be applied to short-reach optical interconnects and metro
network.
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