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The Digital Twin Framework for the Physical Wideband and
Long-Haul Optical Fiber Communication Systems

Hang Yang, Zekun Niu, Qirui Fan, Lyu Li, Minghui Shi, Chuyan Zeng, Shilin Xiao,
Weisheng Hu, and Lilin Yi*

Digital twin (DT) modeling is essential to optical fiber communication
systems, particularly for enhancing system performance, controlling the
system in real time, and understanding signal nonlinearity. Conventional
split-step Fourier method -based simulations, however, struggle with
wide-band transmissions, plagued by increasing complexity and inherent
biases due to inconsistent link parameter availability. Addressing these
challenges, a hybrid data-driven and model-driven DT approach for the
wide-band and long-haul physical systems with various system effects is
developed. The approach utilizes a neural network (NN) to capture fiber
nonlinear features as well as biased perturbations as “lumped” stochastic
noises while offloading the linear effects to modules described by physical
models of link elements. The model, tested in a 30.5-Tbps 1200 km fiber
transmission link with 40 channels, achieves a mean Q factor error of less
than 0.1 dB and a maximum runtime of 1.3 s for NN processing under various
launch powers, transmission lengths, and optical signal-to-noise ratios.
Furthermore, the study has implemented a nonlinear compensation algorithm
on the DT model, yielding a consistent enhancement in experimental data.
The accuracy and adaptability of the DT model underline its suitability for
planning, design, and optimization within the physical optical fiber
communication systems.

1. Introduction

Digital twin (DT) technology, a groundbreaking innovation,
creates a virtual model that mirrors a real physical entity
or process.[1–3] This model, enriched with real-world data,
becomes instrumental in conducting simulations, evaluating
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performance issues, maintaining on-
going monitoring, and facilitating
decision-making processes, subse-
quently optimizing the corresponding
physical object.[4–12] In the field of optical
fiber communication, with the capacity
increase, the intricate design of trans-
mission transceivers, lines, amplifiers,
and related components becomes in-
creasingly critical. Traditional design
approaches, relying on experimental sys-
tems for optical transmission, encounter
formidable challenges due to their pro-
hibitive costs and the depth of expertise
and debugging required, particularly in
the contexts of wideband and long-haul
transmission systems.[13–16] In this case,
DT technology is regarded as a crucial
tool, offering a cost-effective and effi-
cient simulation alternative that not only
aligns with but also leverages the capa-
bilities of existing experimental systems.
In addition, due to the channel features
provided in real-time by DT, it can be
a reliable tool in system control and
optimization, promoting intelligent and
automated management of the physical
optical fiber communication system.

However, the development of a suitable DT model for long-
haul optical transmission experimental systems, particularly
wideband transmission, is an urgent yet unresolved problem. Al-
though the classical split-step Fourier method (SSFM) is a recog-
nized modeling technique in light propagation modeling,[17,18]

its limitations become apparent in wideband transmission sce-
narios. The SSFM struggles to scale effectively due to its com-
plexity, which exponentially increases with bandwidth increase.
Moreover, the absence of a reliable method to calibrate SSFM un-
der variable link parameters often leads to biased results, under-
scoring the need for more adaptable and accurate modeling tech-
niques in this evolving field.[18] The well-known Gaussian noise
(GN) models, offering fast simulations, are considered another
candidate technique for DT.[19,20] They are used as the quality-of-
transmission estimator to calculate the optical and generalized
signal-noise ratio (SNR). Nevertheless, GNmodels are limited in
accurate DT for waveform analysis, system optimization, and dig-
ital signal processing (DSP) verification, due to the underlying
Gaussian noise assumption.
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Recent advancements in data-driven models, particularly
those utilizing neural networks (NN), have shown considerable
promise for fast and accurate optical fiber channel modeling
through enough training data.[21–26] These models, not reliant
on system parameters and physical models, offer a novel ap-
proach to channel modeling and DT. However, the models
are primarily developed based on simulations, posing signifi-
cant challenges for direct application in experimental systems
with complex time-varying random effects. This data-driven
model suffers from limited generalization ability, which does
not scale well in the real experiment scenario. Even if the
NN is fed with a large amount of channel parameters and
data, accurately modeling the full spectrum of channel effects
remains a challenging task. This difficulty primarily stems
from the complexities associated with training large-scale
NNs.
Here, for the first time, we present a DT framework for a phys-

ical optical fiber communication system, including three mod-
ules: data preprocessing, deterministic-randomNN, and physical
model. In the data preprocessing, the mature DSP algorithms
are utilized to separate data features for assisting NN training
and provide physical parameters for feature tracking. Based on
the feature simplification, a data-driven approach is proposed to
capture fiber nonlinear features as well as the interferences from
other bands, which are considered perturbations and modeled
as “lumped” stochastic noises. Both deterministic and stochas-
tic features can be obtained simultaneously in a dual-parallelism
mode. After the NNmodeling, the compensated linear effects by
DSP can be described by physical models of link elements. Fi-
nally, the complete channel features can be obtained by the hybrid
data-driven and model-driven models, which serve as a gray-box
DT framework for a physical channel with composable elements.
In our experiments, two experimental systems of different trans-
mission conditions are studied, one for wideband long-haul
transmission and one for high-nonlinear single-channel trans-
mission, which can determine the wide applicability of the DT
framework. AmeanQ factor error of less than 0.09 dB is achieved
for various conditions, including a 30.5-Tbps 1200 km transmis-
sion with 40 channels and 400-Gbps 800 km transmission with
a single channel. The proposed NN model exhibits fast model-
ing with a maximum running time of 1.3 s across various con-
ditions. Compared with the 40-channel SSFM transmission, DT
achieves 1200 times complexity reduction. Besides, strong gen-
eralization capabilities are demonstrated, including a relatively
wide range of launch powers, optical signal-noise ratio (OSNR)
levels, and transmission distances. The results highlight the high
accuracy, low complexity, and strong generalization ability of the
gray-box DT framework. In addition, a nonlinear compensation
algorithm is implemented on the DT model and has achieved
0.3 dB Q factor improvement, which is consistent with the exper-
iment. Such a technique opens up new possibilities for nonlin-
ear DSP design and verification.We believe that the proposed DT
model provides a reliable physical system model for the develop-
ment of high-rate and long-haul optical fiber communications. In
other fields, this DT framework can also be applied as a universal
paradigm for DT studies of other physical systems with complex
effects.

2. The Digital Twin Framework

The signal propagated through optical fiber communication sys-
tems may be susceptible to intricate and diverse system inter-
ferences, instigated by various devices and optical fibers. These
coupling disturbances include linear and nonlinear effects, along
with random and time-varying noise, complicating the task of ac-
curately modeling the entire process. However, advancements in
DSP have enabled detailed investigation of certain interference
types, especially linear types. This encourages the flexible uti-
lization of mature DSP algorithms to separate system features
and track parameters in real optical fiber transmission systems.
LeveragingDSP for feature decoupling effectivelymitigates time-
varying impacts and simplifies channel characteristics. Subse-
quently, a data-driven methodology can be directly employed to
model the real transmission system based on the collected data.
The integration of parameter tracking via DSP with the data-
driven model ensures the DTmodel remains congruent with the
experimental system’s dynamics. Here, we introduce these tech-
nologies briefly and detailed information can be found in the Ex-
perimental section.
The proposed DT framework for optical fiber communica-

tion systems comprises three core modules: data preprocessing,
deterministic-random NN (DRNN), and physical model, as de-
picted in Figure 1a. The DRNN training data is obtained from a
comprehensive process combining the transmission system and
DSP referred to as data preprocessing. The transmitted data, la-
beled as point A, consists of 16-quadrature amplitudemodulation
(QAM) modulated symbols with probability constellation shap-
ing (PCS), which also serve as the NN input. The modulated
symbols are first processed by the Tx DSP, which includes re-
sampling, pulse shaping by root-raised cosine filter, and precom-
pensation. Precompensation is used to compensate for frequency
bandwidth limits and time delay of high-speed cable skew intro-
duced by the transmitter devices.[27] Subsequently, the processed
signal enters the optical fiber communication systems, traversing
the transmitter, fiber link, and receiver in sequence. Upon receiv-
ing the experimental output, marked as point B1, Rx DSP pro-
cesses the data, involving resampling to two samples per symbol,
low-pass filtering, and IQ balancing. Chromatic dispersion com-
pensation (CDC) and multiple-input multiple-output (MIMO)
equalizer are then applied, addressing chromatic dispersion (CD)
and polarization mode dispersion (PMD), respectively.[28–30] The
signals are downsampled to one sample per symbol, followed by
frequency offset estimation (FOE), synchronization, and carrier
phase recovery (CPE). FOE eliminates frequency offset between
the laser and local oscillator (LO), while CPE recovers phase noise
(PN) caused by the laser and LO.[31] The synchronized transmit-
ter and receiver signals generate aligned training data pairs. The
final received signal post-DSP, referred to Exp-DSP output and
denoted by point C1, forms the training data pairs (A, C1) for
DRNN training in the subsequent stage.
The data preprocessing module in our framework mitigates

time-varying effects, such as PMD and PN, which pose chal-
lenges for NNs processing. After the compensation, the residual
characteristics include uncompensated linear and nonlinear
effects, along with random noise. These can be categorized into
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Figure 1. The DT framework of the optical fiber communication system. a) The proposed digital twin framework. The framework has two main parts:
deterministic-random neural network (DRNN) and physical model. Rx DSP is used for data processing. CDC, Chromatic dispersion compensation;
MIMO, multiple-input multiple-output; FOE, frequency offset estimation; CPE, carrier phase recovery; PN, phase noise; PMD, polarization mode disper-
sion. b) The real experiment system of optical fiber communications. CUT, channel under test. c) The conditions and signal parameters for experimental
systems. d) Schematic diagram of comparison schemes between experiment output and DT output.
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deterministic and random features. Despite their nonanalytic
and random nature, the robust nonlinear fitting capability of
NNs enables data-driven methods to achieve accurate modeling
with sufficient training data.
Accordingly, we have designed the DRNN, employing Bi-

directional Long Short-Term Memory (BiLSTM) for determin-
istic features modeling and Generative Adversarial Network
(GAN) for random features modeling. Specifically, after linear
compensation, the BiLSTM mainly handles deterministic non-
linearity, which is not fully addressed by DSP. This approach is
grounded in perturbation theory, where nonlinearities are con-
sidered perturbations to the linearly compensated signals.[32,33]

The BiLSTM excels in this role due to its ability to capture tem-
poral correlations within signal data, enabling it to predict signal
behavior over time from both past and future contexts, which has
been utilized in fiber nonlinear compensation.[34] Here, it pri-
marily models data-related nonlinear effects from noisy signals,
including self-phase modulation (SPM) and average nonlinearity
induced by random noise and cross-phase modulation (XPM).
Regarding the GAN, it models the remaining distortions after
DSP and BiLSTM, focusing on randomnoise. Stochastic features
typically arise from noise sources such as amplified spontaneous
emission (ASE) and nonlinear interactions like XPM, which
introduce random variations into the signal. The underlying the-
ory is based on statistical models, like the Gaussian noise (GN)
model, which considers uncompensated effects, especially for
XPM under long-haul transmission.[19,34,35] GANs are ideal for
this application because they can generate new data samples that
mimic the distribution of real, observed stochastic disturbances.
Following training with data pairs (A, C1), the DRNN output

indicated as C2, encompasses both deterministic and random
features in Figure 1a. The DRNN is specifically focused on mod-
eling the nonanalytic and random features after DSP decoupling.
However, to establish a complete DT system, it is imperative to
also model the compensated features by DSP. These are typically
linear effects and can be effectively modeled by physical mod-
els of the link elements. As illustrated in Figure 1a, the signal
modifications induced by these physical models are essentially
the inverse of those applied in the Rx DSP. Consequently, the DT
outputs, denoted as B2, are acquired, and the same Rx DSP is ex-
ecuted for signal compensation, facilitating comparison with the
Exp-DSP output. This compensated signal termed the DT-DSP
output, is marked as point C3. By integrating the DRNN and
physical models, and tracking the parameters of post-DSP, the
proposed DT model can align with the real transmission system.
This alignment is effective across both single-band andwideband
transmission scenarios. The model not only achieves high accu-
racy but also boasts remarkably low time consumption, making
it a highly efficient tool in optical fiber communication system
analysis.

3. Result

3.1. Experiment Setup

Here, we use a coherent polarization-division-multiplexed and
wavelength-division-multiplexed (WDM) experiment system to
validate the effectiveness of the DT framework, as shown in
Figure 1b. At the transmitter side, the signals are transmitted to

the arbitrary waveform generator to generate the analog electri-
cal waveforms. These waveforms are then utilized to drive the
IQ modulators for the channel under test (CUT), while the other
interfering channels are generated by real optical transceivers. A
wavelength selective switch (WSS) is employed to achieve WDM
transmission. Subsequently, WDMwaveforms are launched into
the fiber link that comprises several spans of standard single-
mode fiber, each spanning 80 km, along with erbium-doped fiber
amplifiers. A WSS is employed after every eight spans to sup-
press ASE noise accumulation out of the WDM band and adjust
the flatness of the WDM signal. At the receiver side, the selected
CUT signal and the Rx LO are sent to the integrated coherent re-
ceiver. Finally, the received electrical signals are digitized by an
oscilloscope to perform offline Rx DSP.
In practice, we use two experimental systemswith different de-

vice parameters to verify the applicability of the scheme in multi-
ple system scenarios, as shown in Figure 1c. One of the systems
has better device conditions, so it is used to transmit WDM high-
speed signals. Another experimental system is used for single-
channel signals. In the WDM setup, we configured 40 channels,
each transmitting at a rate of 98.4-GBaud, with an inter-channel
spacing of 100 GHz. The PCS 16 QAM is employed, with the
mutual information (MI) of 2.75 and 3.88 for transmission dis-
tances of 2000 and 1200 km, respectively. The total transmission
rate reaches 21.6-Tbps (40 channels × 98.4-GBaud × 2.75 × 2 po-
larizations) and 30.5-Tbps (40 channels × 98.4-GBaud × 3.88 ×
2 polarizations). The launch power is varied from 1.0 to 7.0 dBm
per channel, encompassing the optimal power point and exhibit-
ing varying degrees of nonlinearity. In the single-channel system,
no PCS is performed with 80 to 800 km transmission. The sym-
bol rate is 10-GBaud and 50-GBaud, and the total transmission
rate is 80-Gbps (1 channel × 10-GBaud × 4.0 × 2 polarizations)
and 400-Gbps (1 channel × 50-GBaud × 4.0 × 2 polarizations).
Corresponding launch powers for these rates were set at 3.0 and
4.0 dBm per channel, respectively.
As shown in Figure 1d, a schematic diagram of the compar-

ison scheme to comprehensively present the DT modeling re-
sults. The constellations, intensity distributions, and system per-
formance, including Q factor and SNR, can be presented as com-
parison items quantificationally. In order to save space and avoid
repetition, only X-polarized constellation maps are drawn in the
results. In this paper, the signal performance errors are calcu-
lated through perf (Exp-DSP) − perf ( DRNN or DT-DSP) for one
condition, where perf denotes either the Q factor or SNR. When
testingmultiple conditional values, we calculate themean perfor-
mance error (MPE) using absolute performance errors:

MPE = 𝔼 ‖‖perf (Exp-DSP) − perf ( DRNN or DT-DSP)‖‖ (1)

3.2. The Accuracy and Generalization Capabilities of DRNN

TheDRNNmodel, foundational to theDT system, underwent the
performance validation of the accuracy and generalization capa-
bilities. We first demonstrate the DRNN output constellations in
Figure 2, compared with the CUT results for WDM transmission
under specific conditions: MI of 2.75, launch power at 4.0 dBm,
and fiber length of 2000 km. The chosen power value is the op-
timized launch power. Beyond constellations, we plot the inten-
sity distribution of in-phase symbols, depicted in blue histograms
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Figure 2. The constellations of the Exp-DSP output andDRNNoutput. a) CUT results of theWDM transmission.WDM,wavelength-division-multiplexed.
The blue histogram and envelope represent the intensity distribution of the in-phase symbols. b) High nonlinearity results of the single-channel trans-
mission. T1:30 k training symbols; T2:150 k training symbols.

and envelopes, for a more specific comparison in Figure 2a. The
third column illustrates the BiLSTM output, where data distribu-
tions align with PCS principles. The fifth column presents the
target data for the GAN, derived by subtracting the BiLSTM out-
put from the Exp-DSP output. The variances of the generated data
and GAN’s target data are 0.44 and 0.439, respectively, with both
sets bearing a mean value of 0, showing high consistency. The
experimental output and DRNNmodel exhibit high similarity in
both constellations and histograms, where the BiLSTM captures
the PCS configuration and the GAN successfully models the ran-
dom noise of systems.
Figure 2b shows the performance at a highly nonlinear chan-

nel condition with 3.0 dBm for 400 km single-channel transmis-
sion. The first column, showcasing the Exp-DSP output, reveals
a nonlinear phase rotation correlated with signal amplitudes.
Employing the BiLSTM to capture the nonlinearities, specifi-
cally SPM, we observe a significant divergence between the BiL-
STM and Exp-DSP outputs with 30k training data. However, in-
creasing the training dataset to 150k enables the BiLSTM to ac-
curately learn nonlinear effects, as manifested in constellations
with amplitude-related phase rotations. With enough training,
DRNN can model nonlinear characteristics, closely resembling
the Exp-DSP output. “30k/150k” data references the size of the
training dataset, with each input comprising several consecutive
symbols as depicted in Figure 6a.
To quantitatively compare the accuracy and generalization per-

formance of the Exp-DSP and DRNN outputs, we calculate the
Q factor and SNR under varying conditions, including launch
powers, OSNRs, and transmission distances. The training and
testing results are presented in Figure 3a–d. Each figure’s results
are derived from the same DRNN. The generation of random
symbols is facilitated using Matlab’s random number generator,
applying diverse methods, each with unique seeds, to ensure a

broad range of training scenarios. The methods utilized include:
1) Mersenne Twister. 2) Combined Multiple Recursive. 3) Multi-
plicative Lagged Fibonacci. 4) Philox 4 × 32 generators with ten
rounds. 5) Threefry 4 × 64 generators with 20 rounds. During the
training phase, we employ four distinct types, each configured
with different seeds, to enrich the model’s learning experience.
For the testing phase under the same condition selected in train-
ing, we opt for a different method, altering the seed to assess the
robustness and generalizability of the model.
Figure 3a,b illustrate the generalization performance versus

launch power under different transmission settings. The ranges
of powers used in the training and testing processes are distinctly
different, as illustrated in the figure. These power levels have
been specifically chosen to include a broad spectrum of nonlin-
earity levels, ensuring a comprehensive evaluation of themodel’s
performance across diverse scenarios. This strategic selection of
launch powers plays a critical role in accurately capturing the in-
tricate dynamics of nonlinearity within the optical fiber commu-
nication system. In summary, to ensure robust generalization,
the dataset must encompass a diverse range of scenarios. Sim-
ilarly, our framework is capable of generalizing to various types
of parameters and can extend across different channel numbers
by utilizing data collected from various CUTs for training.
In Figure 3a, the model demonstrates impressive accuracy

with an average Q-factor error of just 0.041 dB across these power
scenarios and an SNR error of 0.037 dB. During testing, themean
error for the Q-factor slightly increases to 0.073 dB, and the SNR
to 0.061 dB. Figure 3b reveals a mean Q-factor error of 0.035 dB
and an SNR error of 0.040 dB under training conditions. In the
testing phase, these errors also exhibit a modest increase, with
the mean Q error reaching 0.066 dB and the SNR error 0.061 dB.
These results underscore the model’s robustness and its ability
to maintain high accuracy even under varying conditions. No-
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Figure 3. Training performance comparisons of the Exp-DSP and DRNN output under different conditions. a–c) WDM transmission. d) Single-channel
transmission. e,f) DRNN convergence progress from a single channel with 10G baud 400 km link to WDM channel with 98.4G baud and 2000 km link.
(e) and (f) are the convergence progress of BiLSTM, and of GAN, respectively.

tably, the maximum errors in Q factor and SNR across different
conditions are confined within 0.122 dB. Compared to the 1-dB
error benchmark set by GNpy, an open-source platform,[35] the
DRNN demonstrates exceptional accuracy and generalization
abilities, effectively representing symbols across various MI, link
lengths, and power conditions with a single DRNN.

Figure 3c illustrates performance against OSNR under varying
conditions: back-to-back (BtB), 800, and 1600 km, with an MI of
2.75 and a launch power of 4.5 dBm. A noise source is integrated
before the coherent receiver, allowing adjustable OSNR levels.
OSNR values during training range from 16.2 to 20.1 dB, with
discrete selection ensuring bit error rates (BER) within the range
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of 2.8E-2 to 5.8E-2. During testing, different OSNR values are
selected to assess the generalization ability of GAN. The recorded
results, shown as dots, indicate a smaller slope for the DRNN
curve compared to the Exp-DSP output, attributable to data-
driven schemes and dataset settings. NN training performance
tends tomeet the best at the average level of the training datasets,
so there are generally greater errors at both ends of the OSNR
value range. The maximum Q error in testing is only 0.121 dB,
underscoring the GAN’s capability in tracking noise distribu-
tions and achieving high accuracy across OSNR levels. Note that
even for the conditions in the training dataset, the performances
at the fringe conditions are slightly worse than at the central
ones. The core of this phenomenon is the distribution of the
training data conditions. From a data-driven perspective, the
primary objective is to minimize the total dataset loss, leading
the NN to focus on reducing loss in the densely sampled middle
conditions, which results in slightly poorer performance at the
edges. Although this phenomenon exists, the performance at
the edges still maintains a low error under 0.1 dB, as shown
in Figure 3c. By adjusting the dataset distribution, one can
achieve a more balanced performance and enhance modeling
accuracy at the boundaries by increasing data density at specific
conditions.
The wide-ranging applicability of the DRNN is further

demonstrated under single-channel transmission conditions in
Figure 3d. In the training condition, the mean error of the Q
factor is only 0.066 dB, and SNR is 0.084 dB. The transmission
distances under tested have mean Q factor and SNR errors of
0.088 and 0.112 dB, respectively. These results, slightly higher in
testing than training conditions, still maintain low error levels,
evidencing the model’s strong distance generalization capability
and potential applicability in single-channel, short-distance sce-
narios with high-intensity nonlinearity.
To address the variability in transmission conditions and de-

vices, we also explore the finetuning of the model between dif-
ferent scenarios. DRNN’s finetuning is performed from a single-
channel, 10G baud, 400 km link to a WDM channel, 98.4G baud,
2000 km link scenario. Figure 3e,f presents the BiLSTM and
GAN loss during this adaptation process. The NN parameters
are typically initialized randomly, a process referred to as Only-
Train mode. To accelerate training when system conditions un-
dergo substantial changes, we keep the parameters from the
previous system configuration as the initial parameters for the
NN. Subsequently, all layers of the NN undergo training without
any layers being frozen. This method is designated as Finetune
mode. Employing this finetune operation enables the NN model
to rapidly adapt to and track changes in system characteristics.
For instance, with initial training on 150 thousand symbols for
the single-channel case, only 6000 symbols are needed to fine-
tune the model for the WDM scenario. The BiLSTM in Finetune
mode converges at 60 epochs, as opposed to 120 epochs in On-
lyTrain mode. The constellation diagrams and Q-factor curves of
the modeled signal also exhibit the Finetune mode’s fast conver-
gence and enhanced accuracy. Specifically, the GAN shows min-
imal jitter during Finetune convergence, quickly stabilizing at
the accurate Q value, in contrast to significant jitter in the On-
lyTrain mode, as shown in Figure 3f. The adaptability of the pro-
posed DRNN is particularly robust, allowing it to be efficiently
fine-tuned to specific channel conditions with minimal learning

overhead. This characteristic is crucial for real-world transmis-
sion systems, where channel conditions and photoelectric de-
vices may vary significantly over time or across different loca-
tions. Employing the finetuning scheme, the DRNN model can
effectively track these changing channel conditions over time,
significantly aiding subsequent analysis and optimization efforts.

3.3. Performance of the Complete DT System with Physical
Models

The complete DT system integrates the physical model with an
accurate DRNN, ensuring that the modeled signals replicate the
channel effects experienced in real-world transmission systems,
as captured by the DSP. In evaluating the performance of this
complete DT system, our attention centers on both its accu-
racy and efficiency in time consumption. Given the similarity
in features during physical modeling for both WDM and single-
channel transmission, we focused our results on the latter, specif-
ically employing a single-channel system with a 50-GBaud rate
and 4.0 dBm launch power to avoid redundancy.
Note that equalization-enhanced phase noise (EEPN) arises

from the interaction between the local oscillator’s laser phase
noise and chromatic dispersion equalizers in coherent optical
systems. In our system, the EEPN effect is not pronounced, so
we have not incorporated this effect into our DT model. How-
ever, given its random characteristics,[36,37] we can utilize GAN
to model this impairment. Additionally, cycle slips in CPE occur
due to significant, abrupt changes in the estimated carrier phase,
leading to a loss of lock in the phase tracking loops. This phe-
nomenon can severely impair the performance of both DSP and
DT models. To mitigate this, DSP employs pilot-aided CPE to re-
duce the effect of cycle slips. Moreover, during the training pro-
cess of the DT model, we monitor the phase curve and discard
any symbols where the phase curve is discontinuous.
Although the physical models can be considered as the inverse

process of the Rx DSP, some modeled features should not be
completely the same as the compensated features, such as the
PMD and PN. One can extract the channel effects, such as the
linewidth of the laser, to achieve flexible configurations.However,
these differences may introduce extra performance degradation
during the physical modeling process. In order to demonstrate
whether themodeling performance will decrease and analyze the
impact of different channel effects, we select nine kinds of combi-
nations of different channel effects during the modeling process,
denoted by plus signs (e.g., PN+FO signifies the inclusion of only
PN and FO effects). After the DSP processing, we can obtain the
Q-factor of the DT-DSP output (referred to as QDT-DSP). By com-
parison with the Q factor of DRNN output (QDRNN) without any
channel effects, we obtained the degradation performance of the
signal, which can be calculated as QDRNN - QDT-DSP.
Our findings, depicted in Figure 4a, reveal that for combina-

tions including up-sampling, FO, CD, and PMD, the DT-DSP
performance closely mirrors the DRNN output with minimal
degradation. This suggests these effects can be set flexibly in for-
ward modeling, and can be fully compensated by DSP, not im-
pacting DT performance. However, PN and combinations con-
taining PN slightly deteriorate signal performance, reaching up
to 0.043 dB. This slight degradation is attributed to the Wiener

Laser Photonics Rev. 2024, 18, 2400234 © 2024 Wiley-VCH GmbH2400234 (7 of 13)
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Figure 4. Results of the complete DT system. a) Q factor results of the DT-DSP outputs under different channel effects conditions. The baseline is the
Q factor of the DRNN output, and the performance differences between DRNN output and DT-DSP output caused by channel effects are listed above
the bar chart. b) The constellation changes of the experiment output and DT output during the same Rx DSP process. c) Q and SNR versus distance of
the Exp-DSP output and DT-DSP output. d) Running time of DRNN and DT model with 40-channels 98.4 G Baud transmission.
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process-based modeling of PN, different from the real data,
which CPE cannot fully compensate to the same level. Fortu-
nately, the degree of performance degradation is very small and
does not affect the final performance of the DT system. Enhanc-
ing the DTmodel’s predictive accuracymay be feasible by extract-
ing the phase noise curve from the Rx DSP. The Rx DSP pro-
cesses the actual received signal, encompassing all impairments
and noises incurred during transmission, including those not
perfectly modeled analytically. By analyzing the received signal, a
phase curve thatmore accurately represents the actual state of the
signals can be derived. To achieve this, the CPE must be metic-
ulously designed to avoid cycle slip effects. More crucially, an ac-
curate phase noise curve should be extracted, taking into account
slow time-varying frequency offsets and EEPN. Investigating how
to accurately extract the phase noise from CPE algorithms—and
assessing its impact on modeling performance and potentially
aiding in reverse-engineering CPE design—is a promising area
for detailed research.
We then undertake a comprehensive comparison of the DT

output accuracy with complete channel effects, analyzed through
constellations and system performance. Both the experimental
system and DT system signals are compensated using the
same Rx DSP, with resulting constellations from each DSP
step displayed in Figure 4b. The similarity in constellation
characteristics post-DSP steps, including CDC, MIMO, FOE,
and CPE, underscores the DT system’s accuracy. The observed
differences between the FOE constellations of the experimental
output and the DRNN-DT output stem from variations in the
PN values. As previously mentioned, the PN values employed
in our study are not derived from the experimental DSP; rather,
they are modeled using the Wiener process. Quantitatively, the
Q factor and SNR of the DT-DSP and Exp-DSP are recorded
under varying distances, as shown in Figure 4c. The mean error
for the Q factor was a mere 0.054 dB, and for SNR, 0.075 dB.
These errors are smaller than those of the DRNN output, which,
originally limited in interference modeling, displayed slightly
higher performance than the experimental signal. The intro-
duction of PN-induced performance degradation brings the DT
interference level closer to the experimental output, reducing
the discrepancy with the Exp-DSP output.
Finally, we record the running times of the DRNN, the DT

model (combination of DRNN and physical model with a single
channel), and the SSFM across different distances for both sin-
gle channel and 40 channels, as illustrated in Figure 4d, demon-
strating that the DT system is not only accurate but also effi-
cient, meeting the basic requirements for practical application.
Both the 40-channel transmission and single-channel transmis-
sion employ 4.0 dBm signal power, with 131 072 transmitted
symbols. The DRNN model’s complexity is independent of dis-
tance, leading to consistent running times, all below 1.3 s on an
RTX3090. The physical model uses the linear model of SSFM.
As the distance increases, the modeling time of physical mod-
els will gradually increase with the span number. The running
time of the whole DT process, depending on the physical model,
is roughly equivalent to the sum of the DRNN and SSFM times
for a single channel, which at 80 km is ≈1.6 s. As for the WDM
transmission, both the DRNN and physical model have the same
structure with the single-channel transmission case, resulting in
a significant reduction of running time. For example, compared

to the SSFM in 40-channel 1200 km transmission, DT takes ≈6 s
versus SSFM’s 7280 s, achieving a reduction by over 1200 times.
As the number of transmitted symbols increases, the accelera-
tion of the DT model is expected to be further amplified, owing
to high parallelization on GPU platforms.
Compared to SSFM and GN models, the proposed DT model

presents significant advantages. The SSFM simulates wave-
form propagation in optical fibers, governed by the Nonlinear
Schrödinger Equation (NLSE). Although it provides highly accu-
rate solutions to the NLSE, SSFM is not ideal for establishing
DTs of experimental systems, primarily due to its complexity. In
such instances, while the DT model experiences only a modest
increase in time consumption, the SSFM becomes impractical
due to its complexity, which scales at least to the fourth power
of the bandwidth. Furthermore, SSFM struggles to align closely
with real experimental environments due to discrepancies in pa-
rameters between theNLSE and SSFM, aswell as dynamic effects
that are difficult to capture and accurately model using the basic
NLSE framework.
GN models, which focus on statistical characteristic model-

ing, are employed to predict optical network performance. Due
to their reliance on statistical models, GN models do not provide
waveform information, which limits their utility in DSP design.
Additionally, these models are based on Gaussian assumptions
and often require modifications for practical applications. This is
particularly true in scenarios characterized by high nonlinearity
where signals are non-Gaussian, such as in short-distance, high-
power transmissions.
The proposed DT framework, by directly collecting training

data from the experimental platform, incorporates all channel
and component effects of the real system, establishing a highly
accurate DT for the CUT. This framework combines the bene-
fits of both SSFM and GN models, achieving high accuracy in
waveform modeling with significantly greater computational ef-
ficiency. Moreover, the DT model demonstrates remarkable scal-
ability for more complex scenarios involving multiple channels.
As optical communication is reaching its limit of spectrum effi-
ciency, ultra-wide-band transmission is being adopted to further
push forward the optical fiber capacity. The proposed DTmodel’s
ability to adapt and scale in response to the evolving demands of
optical communication positions it as an essential tool for driving
future advancements in the field.

3.4. Nonlinear DSP Verifications using DT Generated Data

DT model’s ability to generate datasets that closely mimic those
from experimental systems stands out as a significant advantage,
particularly for the validation of DSP algorithms. In addition to
the linear compensation algorithms previously mentioned, the
DT model also facilitates the design and validation of nonlinear
compensation (NLC) algorithms, a crucial aspect of modern op-
tical communication systems.
One notable NLC algorithm we incorporated is the clas-

sic perturbation-based nonlinearity compensation (PNC)
architecture,[32] which is implemented subsequently to lin-
ear compensation. The PNC algorithm is specifically designed
to counteract the SPM effect, a common nonlinear impair-
ment in optical fibers. A key advantage of this approach is its

Laser Photonics Rev. 2024, 18, 2400234 © 2024 Wiley-VCH GmbH2400234 (9 of 13)
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Figure 5. Nonlinear compensation results of the experiment and DT sys-
tem. Q:EXP-DSP: Q factor performance after DSP using experiment data;
Q:DT-DSP: Q factor performance after DSP using DT data; Q:EXP-PNC: Q
factor performance after perturbation nonlinear compensation using ex-
periment data; Q: DT-PNC: Q factor performance after perturbation non-
linear compensation using DT data.

compatibility with the existing generalized DSP framework,
where the PNC can be deployed following the CPE algorithm
without necessitating any alterations to the established DSP
structure. This seamless integration makes the implementation
of NLC not only effective but also convenient, allowing for more
straightforward adaptation and optimization in real-world optical
communication systems.
Figure 5 provides a detailed comparison of the transmission

performance of a system before and after the implementation
of PNC, operating at a transmission rate of 98.4G Baud over a
2000 km distance, with power levels varying from 1.0 to 7.0 dBm.
The PNC employed features 81 taps, indicating the level of com-
plexity and precision in the compensation process.We design the
PNC based on the DT model and then perform the PNC on the
experiment data.
At a low power range, the SPM effect is weak, and there is no

significant performance improvement in PNC. At a high power
range, PBC can achieve a better Q-factor improvement. Based on
the DT model, the designed PNC is tested in the experiments.
Taking into account all power factors, the experimental data
showed an average improvement of 0.33 dB in the Q-factor, and
the DT data showed an average improvement of 0.31 dB in the
Q-factor. The optimal power changed from 4.0 dBm before PNC
compensation to 4.5 dBm after PNC compensation, both in the
experiments and DT outputs. The high consistency between
the DT results and the experimental data underscores the DT
model’s accuracy in nonlinear modeling. In addition, with
the capacity limited by the nonlinearities, one of the potential
applications of DTmodel can be nonlinear compensation design
and verification. The DTmodel, therefore, not only enhances the
accuracy and efficiency of simulating real-world transmission
scenarios but also serves as a robust platform for testing and
refining advanced DSP algorithms, including those aimed at
mitigating nonlinear impairments. This capability is particularly

valuable in the pursuit of higher performance and more reliable
optical communication networks.
Looking forward, the ability to generate data that aligns closely

with experimental outcomes using the DT model opens up new
possibilities. It allows for rapid DSP verifications without the
need for extensive physical experimentation, significantly accel-
erating the development and optimization of nonlinear DSP al-
gorithms in optical communication. This capability is especially
beneficial for exploring and validating new techniques in a more
efficient and cost-effective manner.

4. Conclusion

In conclusion, we propose a gray-box DT framework including
a data preprocessing module, DRNN, and physical models, for
a physical optical communication system. The above results ver-
ify the wide generalization capability, high accuracy, fast calcu-
lation speed, and DSP verification capabilities of the DT struc-
ture, demonstrating the effectiveness and efficiency of the pro-
posed DT framework. The DRNN model demonstrates robust
and versatilemodeling capabilities across a wide spectrum of link
conditions and signal configurations. This includes various sym-
bol distributions such as PCS and uniform distribution, WDM
and single-channel scenarios, as well as long-haul and short dis-
tances. It also accommodates a wide range of launch power val-
ues and OSNR levels. Moreover, the model’s adaptability is en-
hanced by fast finetuning techniques, enabling real-time track-
ing of channel conditions through online training. In testing
scenarios, the DT model has shown remarkable accuracy, with
the mean Q factor and SNR error below 0.088 dB, which closely
align with real experimental data. The DRNN’s running time of
less than 1.3 s highlights its efficiency and low complexity. As
the industry shifts toward ultra-wide-band transmission to fur-
ther augment the capacity of optical fibers, the role of the pro-
posed DT model becomes increasingly pivotal. In addition, we
achieve a PNC based on the DT model, and the same nonlinear
performance improvement is validated on the experiment data.
Based on the excellent results, we believe the proposed DT archi-
tecture reduces both the cost and the time for the development
cycle since the systemmodeling prior to the implementation and
field trials. Building upon these advancements, theDTmodel can
be more effectively applied in the realms of device design, sys-
tem optimization, andmanagement, thereby contributing signif-
icantly to the advancement of communication technologies.

5. Experimental Section
Deterministic-Random Neural Network: The data preprocessing mod-

ule eliminates time-varying effects that neural networks were not good
at processing, including PMD and PN. After the compensation, residual
characteristics consist of uncompensated linearity, nonlinearity, and ran-
dom noise, which could be divided into deterministic features and ran-
dom features. There were two challenges in such data acquisition. First,
to enhance the model’s generalization capabilities, it was essential to alter
system conditions to collect a large volume of data under various condi-
tions. Second, data at the receiver end must undergo DSP before it can
be utilized for network training. Both modifying experimental conditions
and performingDSP operations were feasible, given the abundance of data
available in communication systems. Thus, the challenges associated with
data acquisition could be effectively addressed.

Laser Photonics Rev. 2024, 18, 2400234 © 2024 Wiley-VCH GmbH2400234 (10 of 13)
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Figure 6. Deterministic-randomNN structure. a) BiLSTM structure for deterministic features. b) GAN structure for random features. FC, fully connected.

Considering the timememory between the channel data and the perfect
internal memory ability of BiLSTM, we choose it for deterministic effects
modeling with temporal correlation.[38] As shown in Figure 6a, in the in-
put layer, the symbols at different times [x(t −m),… , x(t),… , x(t +m)]
were fed to the BiLSTM as an input sequence, which means that the input
layer contains 2m+1 time steps. At each time step, x(t) contains one in-
put symbol and control information, such as the launch power, distance,
and OSNR value. The units of these values were dBm, km, and dB, re-
spectively. The control information relates to the system performance and
brings a strong generalization ability of NN. Note that the symbols in a co-
herent transmission system were generally represented by complex num-
bers. Complex numbers were converted into real numbers for NN input.
Then the input data were fed to the LSTM cells to realize the recurrent

connection. The outputs from multiple time steps were concatenated to
form a vector and this vector was then fed into a dense layer to obtain the
output C̄. The hyperparameters of the DT model are detailed in Table 1,
which includes configurations for the BiLSTM, generator, and discrimina-
tor models.

GAN was a generative model consisting of two parts: a generator and
a discriminator.[39] The generator aims to capture the training data distri-
bution and generate new data with the same distribution to fool the dis-
criminator. The discriminator classifies the real data and fake data. Here,
a GAN structure was designed to learn the random distribution and gen-
erate random features of the channel. The structure is shown in Figure 6b.
The training data, also the real dataset, of GAN was the difference
between the Exp-DSP outputs and the BiLSTM outputs, which could be

Laser Photonics Rev. 2024, 18, 2400234 © 2024 Wiley-VCH GmbH2400234 (11 of 13)
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Table 1. The hyperparameters of our digital twin model.

Bi-directional Long Short-Term Memory Generator in Generative Adversarial Network (GAN) Discriminator in GAN

layers 3 input size 1 input size 5

input size 5 hidden layers 2 hidden layers 2

hidden neuron 5 hidden neuron [256,64] hidden neuron [256,64]

time step 101 output size 1 output size 1

represented as C1 − C̄. In the coherent system without dispersion man-
agement, the distribution of the combined effects of other channels and
noise on the CUT could be considered as Gaussian distribution.[40,41]

GAN itself could learn arbitrary random distribution, but this Gaussian
approximation was made on the generator to reduce the training time and
improve the modeling accuracy. The designed generator contains four
fully connected layers. The control information was input to the generator
to control the output random data corresponding to the system setting
condition. The output of the third layer was themean value 𝜇 and standard
deviation 𝜎 of random Gaussian noise and the random noise could be
reparametrized by these learned values. That was, random data satisfying
the corresponding distribution was obtained through sampling. The dis-
criminator contains three fully connected layers. The control information
and the generated data N̂ or real data N from the dataset were input. The
output of the discriminator represents the probability that N̂ orN was the
real data. In the final training stage, the discriminator cannot distinguish
the generated data and the real data, which means they have similar distri-
butions, and the model training was completed. In practice, training GAN
involves an adversarial process that might introduce some distribution
errors in the modeled data. These errors could be mitigated by increasing
the volume of training data, which was discussed in the previous work.[25]

In the training process, the loss function of the BiLSTM is the smooth
L1 loss, and the GAN was the modified adversarial loss. The number of
training data with each condition is 150 thousand. One training data ref-
erence one input and output symbol pair. The epoch number of BiLSTM
was set at 200 and GAN was set at 300. The weights of both NNs were ini-
tialized by He initialization.[42] The optimizer was Adam.[43] The learning
rate was 1e−3 initially and it decreases during the training process using
a cosine annealing schedule.[44] The decreasing learning rate could im-
prove training accuracy. After the training, the DRNN output, marked as
C2, contains deterministic and random features and could be represented
by C̄ + N̂.

Physical Model: The DRNN only models the nonanalytic and random
features preserved after DSP. The compensated features should also be
modeled to form a complete DT system. The compensated features could
be considered as linear effects, which could be described by physical mod-
els of link elements. As shown in Figure 1, the signal changes by the phys-
ical models were basically inverse to that of Rx DSP. The signal is first up-
sampled to two samples per symbol because the linear effects modeling
process should satisfy the Nyquist sampling theorem. Then PN and FO
caused by laser on the kth symbol could be modeled as

l(k) = s(k) exp(j𝜑k),𝜑kΔ𝜔kT + 𝜃L(k) (2)

where s(k) is the kth symbol after up-sampling, l(k) represents the kth sym-
bol after the laser model, 𝜑k is the total phase caused by the PN and FO,
T is the sampling period. Δ𝜔 is the additional phase caused by the FO,
which can be obtained from the FOE algorithm. 𝜃L(k) is the PN from the
laser linewidth, which is generally considered a Wiener process.[45]

Then the linear interferences from optical fiber are modeled. Since the
parameters of MIMO adaptive filters were not explicable and had no phys-
ical meanings, the physical polarization model based on the Manakov-
PMD equation was utilized to represent the PMD.[46,47] The numeri-
cal simulation method was SSFM, which was considered a highly accu-
rate method for linear channel feature modeling. Differential group delay
(DGD) values relate to the PMD intensity, and most PMD effects could

be compensated by MIMO adaptive filters. Therefore, the PMD intensity
could be defined by users flexibly, and the DT performance would not be
affected. With the nonlinear interplay with PMD effects along the link, non-
linearity becomes a randomeffect that could be averaged over the Poincaré
sphere with the well-known 8/9 factor.[46] This suggests that the intensity
of nonlinearity with PMD remains stable. The GAN was used to capture
these random effects as a “lumped” noise, which was challenging to sepa-
rate for any channel modeling scheme. The effectiveness of this approach
was validated by the experimental results shown in Figure 3.

For convenience, CD and PMD effects were performed together using
the SSFM in some steps. In each calculation step, the operation consists
of three steps. First, rotate two local principal states of polarizations (SOP)
of the polarization beam by a rotation R(𝜃, 𝜑), which can be expressed as:

R (𝜃,𝜑) =
(

cos 𝜃 sin 𝜃 exp(i𝜑)
− sin 𝜃 exp(i𝜑) cos 𝜃

)
(3)

where 𝜃 and 𝜑 represent the rotation angle and phase.[43] These rotation-
related values are random corresponding to the random polarization
states during the propagation. Then the effects of the CD and PMD can be
implemented on the current SOP as

c̃x (z + h,𝜔) = l̃x (z,𝜔) exp
(
−i

𝛽2

2
𝜔2 + i

Δ𝛽1
2

𝜔

)
h, c̃y (z + h,𝜔)

= l̃y (z,𝜔) exp
(
−i

𝛽2

2
𝜔2 − i

Δ𝛽1
2

𝜔

)
h (4)

where l̃x and l̃y represent the frequency-domain signal output from the
laser model over two arbitrary orthogonal polarization modes, c̃x and c̃y
represent the frequency-domain signal output from the dispersion model,
z is the distance coordinate and h is the step length. 𝛽2 is the group ve-
locity dispersion (GVD) parameter, and this parameter is the same as that
in CDC. Δ𝛽1 is DGD caused by PMD.[48] After modeling the linear effects
defined by GVD and DGD, the SOP is rotated back to the original states.
With the integration of additional measurements, users can acquire fur-
ther parameters such as the device’s bandwidth limit and the delay be-
tween the in-phase (I) and quadrature (Q) branches through the optical
spectrum.[49] These physical parameters are not included in the BiLSTM
model, as they are explicitly defined within the physical model itself. To
incorporate these parameters, an upsampling operation and a Tx physical
model would need to be implemented prior to the BiLSTM model. This
inclusion allows for the consideration of Tx distortions in the model. Al-
though this adjustmentmay deviate fromwhat is illustrated in Figure 1a, it
does not alter the fundamental principle of the DT model. Future research
can aim to enhance the flexibility of the DT model, thereby accommodat-
ing the evolving user needs and incorporating additional features.

With advancements in DSP, more accurate dynamic effects could be
captured and modeled inversely. However, the challenge remains that
time-varying effects may change over time, making real-time tracking a
critical limitation in capturing such effects accurately. To address this lim-
itation, it was essential to develop a real-time tracking model that con-
sistently aligns with experimental conditions. This development might in-
volve three key steps: 1) extraction of DSP parameters, 2) estimation of pa-
rameters for the physical model, and 3) construction using the DT model.
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Integrating these steps into a comprehensive framework represents an in-
triguing and promising area for future research based on the DT model.
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