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Abstract: We propose a rectangular optical filter based on stimulated 

Brillouin scattering (SBS) in optical fiber with bandwidth tuning from 50 

MHz to 4 GHz at less than 15-MHz resolution. The rectangular shape of the 

filter is precisely achieved utilizing digital feedback control of the comb-

like pump spectral lines. The passband ripple is suppressed to ~1 dB by 

mitigating the nonlinearity influences of the comb-like pump lines 

generated in electrical and optical components and fibers. Moreover a fiber 

with a single Brillouin peak is employed to further reduce the in-band ripple 

and the out-of-band SBS gain at the same time. Finally, we analyze the 

noise performance of the filter at different bandwidth cases and demonstrate 

the system performance of the proposed filter with 2.1-GHz bandwidth and 

19-dB gain by amplifying a 2-GHz orthogonal frequency-division-

multiplexing (OFDM) signal with quadrature-phase-shift-keying (QPSK) 

and 16-quadrature-amplitude-modulation (16-QAM) on each subscriber. 
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1. Introduction 

Optical narrowband filtering ranging from MHz to several GHz plays an important role in 

high-resolution optical signal processing, especially in the context of flexible switching in 

high speed optical transmission systems [1] and band-pass filtering in microwave photonics 

[2]. An ideal tunable passband filter has a rectangular response consisting of an ultra-flat 

passband and very steep edges which bring about many benefits. The flat passband will not 

distort the signal at all thus keeping high signal fidelity. The steep edges can suppress 

crosstalk from adjacent bands at the extreme. The wavelength and bandwidth tunability 

makes it reconfigurable and more flexible to meet different requirements. 

Such kind of rectangular filters with large bandwidth have already been achieved by using 

liquid-crystal on silicon (LCOS) technique [3] and tunable bulk-grating optical filter [4]. 

However, for both techniques, the flat-top passband shape can only be obtained for bandwidth 

larger than ~10 GHz. For smaller bandwidth, the filter passband tends to a Gaussian shape, 

which cannot completely meet ultra-narrow sub-wavelength switching requirements, such as 

in multi-band orthogonal-frequency-division-multiplexing (MB-OFDM) systems [4]. Several 

methods have been proposed to implement optical filters with bandwidth in GHz-range: 

specially designed fiber Bragg gratings (FBG) [5], microring-based optical combs [6], Fabry–

Perot etalons [7], forward stimulated interpolarization scattering [8] and Stimulated Brillouin 

scattering (SBS) [9–13], etc. Among all the above methods, SBS based active filter has been 

considered as one of the most promising techniques. The wavelength of the SBS-based filter 

can be tuned easily by tuning the wavelength of the pump. The filter bandwidth and the shape 

can be also flexibly changed by controlling the pump spectrum using external modulation [9, 

10], direct current modulation [11, 12] and cascaded phase and intensity modulation [13]. In 

addition, the filter extinction ratio can be further increased by the polarization characteristics 

of the SBS amplification [10, 12]. However, it is very difficult to control the pump spectrum 

#215243 - $15.00 USD Received 4 Jul 2014; revised 15 Aug 2014; accepted 6 Sep 2014; published 16 Sep 2014
(C) 2014 OSA 22 September 2014 | Vol. 22,  No. 19 | DOI:10.1364/OE.22.023249 | OPTICS EXPRESS  23250



precisely in the previous works, therefore the exact flat top and sharp edges as the ideal 

rectangular filter can be hardly achieved. 

In this paper, we present a narrowband rectangular SBS filter with tunable bandwidth 

from 50 MHz to 4 GHz at less than 15-MHz tuning resolution. We modulate the pump using 

external intensity modulation by an electrical frequency comb whose amplitude and initial 

phase can be digitally controlled accurately. A feedback compensation process is proposed to 

control the pump shape precisely. Some preliminary results have been presented previously 

[14] which shows the validity of the feedback method. On the foundation of the feedback 

process, we further propose to mitigate the nonlinear effects of the comb-like pump generated 

in electro-optical components and fiber. Meanwhile we utilize a more suitable fiber with a 

single significant Brillouin gain peak to improve the filter flatness. As a result, the in-band 

ripple is decreased to ~1 dB for all bandwidth cases while the unwanted out-of-band gain is 

further suppressed. Finally, we demonstrate the system performance of the proposed filter by 

amplifying an OFDM signal with quadrature-phase-shift-keying (QPSK) and 16-quadrature-

amplitude-modulation (16-QAM) formats on each sub-carrier, which proves the validity of 

the SBS based rectangular filter. 

2. Rectangular filter shape achieved by feedback control 

The natural SBS gain is Lorentzian shape with bandwidth ranging from 10 MHz ~50 MHz 

depending on different types of fibers [15]. Theoretically, in order to obtain the ideal 

rectangular SBS gain spectrum, a pump consisting of equal-amplitude spectral lines with 

interval equaling the natural SBS gain bandwidth is required. Instead of controlling the pump 

spectrum from the time domain, we firstly generate an electrical frequency comb with equal 

amplitude at each spectral line using an arbitrary waveform generator (AWG). Then we 

modulate it with optical carrier-suppression single-sideband (OCS-SSB) modulation to 

generate an optical frequency comb as the Brillouin pump. The SBS filter bandwidth 

adjustment is achieved simply by controlling the number of electrical spectral lines so as to 

the pump spectral lines. In addition, we can control the amplitude, the initial phase of each 

electrical spectral line and the frequency spacing of spectral lines digitally and precisely. It 

guarantees that there is no spectral components out of the comb region at all, resulting in a 

steep-edged pump light, thus the SBS gain spectrum obtained has very steep edges as well, 

which is unachievable in the previous schemes. 

However, given the nonlinear responses of electrical and optical components such as the 

optical modulator and its driver, the flat electrical spectral lines lead to uneven SBS gain as 

sketched in Fig. 1. Since the SBS gain exponentially increases with the pump power, even 

small pump power variation results in great gain difference. Thus an accurate control of each 

pump line with an effective revision is desired. 

Original 

electrical 

spectral lines

Original 

SBS gain

Electrical spectral  

lines after feedback 

compensation

SBS gain 

after feedback 

compensation

Feedback

Original 

pump lines

 

Fig. 1. The electrical spectral lines, pump lines and SBS gains before and after feedback. 

The relation between the pump and the SBS gain in classical theory [16] is described in 

formula (1): 
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where Ps(0)/Ps(L) is the signal gain, P0 is the pump power and αL is the fiber loss. When we 

use logarithmic unit and neglect the fiber loss, the signal gain and the pump power have a 

linear relation as shown in formula (2): 

  
2

0Gain(dB) Pump_amplitudeP   (2) 

In our experiment, the electrical signal is from the AWG with the Vpp of less than 1V which 

is much smaller than the Vpi of the IQ modulator. So it is reasonable to treat it as small-signal 

modulation where the electrical and optical signal have an approximate linear relation. Based 

on this approximation, we can derive the revision Eq. (3) and calculate the new amplitude of 

each electrical spectral line. 

 
2 2

2 2

Gain_ideal(dB) Pump_amplitude_new Electrical_amplitude_new
= =

Gain_measured(dB) Pump_amplitude_old Electrical_amplitude_old
   (3) 

Considering that the SBS gain is only related to the pump power, we just control the 

amplitude of each electrical spectral line and set a random phase for each line to maintain a 

good peak to average ratio of the waveform from the AWG. 

Based on Eq. (3), we propose an effective feedback compensation scheme as shown in 

Fig. 2. The general procedure is as follows: Firstly generate the original pump lines by OCS-

SSB modulation using flat electrical spectral lines. Then measure the SBS gain spectrum by 

an electrical vector network analyzer (EVNA) and use Eq. (3) to calculate the new amplitude 

of every electrical spectral line. Taking into account the linear approximation error and the 

non-ideal responses of electrical and optical components, a rectangular gain spectrum can 

only be obtained by repeating the generation, measurement and feedback process successively 

for several times. Once the feedback compensation is completed, the electrical spectral lines 

can be recorded for rectangular SBS filter generation. 

Feedback compensation

 

Fig. 2. The feedback compensation method. 

The experimental setup is shown in Fig. 3. An external cavity laser (ECL) operating at 

1550 nm is split into two branches. In the upper branch, an AWG is used to generate the 

electrical spectral lines with frequency interval equaling the natural SBS bandwidth of 15 

MHz. Then it is modulated on the light to generate the SBS pump lines utilizing an I&Q 

modulator (IQM). With proper I&Q phase adjustment and bias control of the modulator, the 

OCS-SSB modulation can be achieved. The OCS-SSB signal is then amplified by an erbium 

doped fiber amplifier (EDFA) and launched into the 12.5-km single-mode fiber through an 

optical circulator. The SBS gain is ~11-GHz away from the pump as shown in Fig. 3(i). In the 

lower branch, a sweeping signal covering the whole SBS gain region from an EVNA is 

modulated on the light to generate the probe signal. An optical bandpass filter (BPF) removes 

the left sideband of the probe signal for stable SBS gain measurement as shown in Fig. 3(ii). 

Then the probe light goes through the fiber and is amplified once it sweeps within the SBS 

gain region as shown in Fig. 3(iii). A polarization controller (PC3) is used to achieve the 

maximum SBS gain. After the SBS process, the probe signal is detected by a photodiode (PD) 

and then sent into the EVNA. The amplitude and phase responses are measured by the EVNA 

and the SBS gain spectrum can be obtained by subtracting the results with and without the 

SBS amplification. 
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Fig. 3. Experimental setup. Inset (i) single sideband pump fp, SBS gain around fg, and ECL 
laser frequency fc, (ii) sweeping probe signal, (c) sweeping probe signal amplified by the SBS 

gain. 

The measured SBS gain spectra with 500-MHz bandwidth are shown in Fig. 4. Figures 

4(a) and 4(b) are the SBS gain spectrum and phase response before implementing the 

feedback compensation. Figure 4(c) shows the flat electrical spectral lines generated by the 

AWG. Due to the non-ideal frequency response of the I&Q modulator and its electrical 

driver, the pump spectral lines become uneven and the corresponding SBS gain ripple is as 

high as 5 dB accompanying remarkable unwanted out-of-band gain. Meanwhile the curve of 

the phase response is quite rough due to the large amplitude ripple. After implementing the 

feedback process for several times, we obtain the SBS gain spectrum shown in Fig. 4(e). The 

gain is about 25 dB and the maximum ripple is reduced to 0.7 dB. In the meantime the curve 

of the phase response is very smooth as shown in Fig. 4(f). The 3-dB and 15-dB bandwidths 

are 493 MHz and 539 MHz respectively, corresponding to a shape factor (SF15dB) of 1.093, 

which is close to the ideal rectangular case of 1. Here, the SF15dB is defined as the ratio of 

filter bandwidth at 15 dB to 3 dB to characterize the steepness of the filter edge. The 

corresponding electrical spectral lines are shown in Fig. 4(d), which are totally different from 

the original in Fig. 4(c) and unpredictable, thus proving the importance and validity of the 

feedback compensation method. 

 

Fig. 4. (a) The original SBS gain spectrum, (b) the phase response and (c) corresponding 
electrical spectral lines. (e) The SBS gain spectrum, (f) phase response and (d) corresponding 

electrical spectral lines after feedback process. 

3. Bandwidth increase and flatness improvement 

In the feedback process it is assumed that the SBS gain at a certain frequency is only related 

to the corresponding electrical spectral line. It works well when the filter bandwidth is small. 
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However, with the increase of the filter bandwidth, the increasing pump power and number of 

spectral lines cause remarkable four-wave mixing (FWM) in the optical fiber which 

redistributes the pump power and generates new spectral lines at the stop band. Another 

factor not taking into account is the nonlinearity of the modulation such as third-order 

intermodulation that also introduces new spectral lines and cannot be neglected when the 

pump power is large. The nonlinearity induced spectral components are sketched in Figs. 5(a) 

and 5(b) in the color of yellow. It results in a partial failure of the feedback process leading to 

larger passband ripple and out-of-band gain. Therefore an effective nonlinearity management 

is required. 

Nonlinearity  
introduced 

components

Original electrical 

spectral lines

Original SBS 

gain

Final electrical 

spectral  lines 
Final SBS gain

Feedback

(FB)

Electrical spectral  

lines after FB
SBS gain after FB

Single-peak 

fiber

Nonlinearity 

management

Original 

pump lines

Pump lines 

after FB

Original

Final pump 

lines

(a)

(b)

(c)

Multiple 
SBS gain 

peaks

Unequal interval

 

Fig. 5. The electrical spectral lines, pump lines and the SBS gains in different cases. 

We propose a nonlinearity management method as shown in Fig. 5(c). We set frequency 

interval of the electrical spectral lines randomly around the natural SBS gain bandwidth 

instead of the equal interval, i.e. 14 MHz, 15 MHz and 16 MHz. In this case the new spectral 

lines generated by the FWM and the nonlinear modulation are no longer superposing on the 

original lines. As a result, the power of these new spectral lines is very small compared with 

the original lines and can just induce tiny gain or even under the threshold of SBS effect. 

Therefore the flatness of the passband gain can be greatly improved and the unwanted out-of-

band gain can be partly suppressed as well. 

In Fig. 6 we demonstrate the comparison of the SBS gains between the equal intervals and 

unequal intervals. We set four electrical spectral lines and measure the SBS gains in different 

conditions. To clearly observe the amplitude variation of each SBS peak, the equal intervals 

are all set to 200 MHz while the unequal intervals are set to 199, 200 and 201 MHz 

separately. The total pump power is ~10.5 dBm. In the equal interval case, the newly 

generated frequency components by FWM and modulation nonlinearity superpose with the 

original pump lines therefore interference happens. The phase relationship among the 

different pump lines will affect the power of the pump lines due to nonlinearities, resulting in 

different SBS gain spectra. For the sake of showing the nonlinear effects, we change the 

initial phase of the first electrical spectral line on the left so as to change the phase relations of 

the pump lines, the SBS gain variation is clearly observed and the out-of-band SBS gain is as 

high as 5 dB as shown in Fig. 6(a). For ~GHz SBS gain with only 15-MHz interval, the 

number of the pump spectral lines is several hundred. Therefore the condition is much more 

complicated and it is very difficult to control the phase relationship among the pump lines to 
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achieve flat SBS gain. However, when the intervals are set unequal, it is hard to distinguish 

the difference among the different cases and the out-of-band SBS gain is also significantly 

reduced as shown in Fig. 6(b) since the newly generated frequency components do not 

superpose with the original pump lines. We call this uneven pump interval method as 

nonlinearity management. 

 

Fig. 6. 4 SBS gain peaks with (a) equal intervals and (b) unequal intervals. 

Moreover, the natural SBS gain spectrum is related to the material doping profile [17] and 

the structure of the fiber [18]. In the Germanium-doped G-652 fiber that we used in the 

previous work [14], there are 4 SBS peaks (i.e. four first Lom acoustic modes) as sketched in 

Figs. 5(a) and 5(b) in the color of green while the measured result is shown in Fig. 7(a). The 

multiple minor SBS gain peaks superpose with other main SBS gain peaks generated by 

different pump lines and will affect the feedback process. It contributes to the un-flat filter 

passband and induces out-of-band gain as well. Therefore we employ a fiber with a single 

Brillouin peak (a standard single-mode fiber in our lab) as shown in Fig. 7(b) which is highly 

desired in our experiment. By employing both the nonlinear management and the new fiber 

with single Brillouin peak, the final SBS gain will be ultra-flat as sketched in Fig. 5(c). 

 

Fig. 7. The natural SBS gain in (a) G-652 fiber (b) fiber with a single Brillouin peak. 

The measured SBS spectra with 3-GHz bandwidth in different cases are shown in Fig. 8. 

The original SBS gain generated by the electrical spectral lines with equal amplitude and 

equal frequency interval are seriously affected by the non-flat frequency response and 

nonlinearities of the electrical and optical components. As shown in Fig. 8(a), the SBS gain is 

far from the rectangular shape. When implementing the feedback compensation as shown in 

Fig. 8(b), the ripple is still as high as 3.70 dB with large unwanted out-of-band gain. After 

utilizing the unequal interval spectral lines, the passband ripple in Fig. 8(c) is significantly 

reduced to 1.56 dB. By further employing the single-peak fiber, the ripple is further decreased 

to 1.00 dB shown in Fig. 8(d) and the out-of-band SBS gain is also smaller than the previous 

cases. In the meantime, the number of feedback iterations decreases from dozens of times to 

~10 times. We can further decrease the in-band ripple by implementing more feedback 
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iterations, but ~1 dB ripple already satisfies most of the applications. Besides, the ripple 

measurement accuracy is also limited by the power measurement precision of the EVNA. 

 

Fig. 8. The measured SBS spectra (a) original spectrum (b) after feedback process (c) utilizing 
nonlinearity management (d) utilizing nonlinearity management with single-peak fiber. 

Meanwhile, the nonlinearity management (i.e. random interval between the electrical 

spectral lines) also improves the shape factor of the filter. The 1-GHz SBS filter without and 

with nonlinearity management are shown in Figs. 9(a) and 9(b) respectively. After 

implementing the nonlinearity management, the shape factor is further reduced from 1.167 to 

1.075 which is almost the ideal rectangular case. 

 

Fig. 9. The 1-GHz SBS filter (a) after feedback process (b) utilizing nonlinearity management 
with single-peak fiber. 

The bandwidth of the proposed filter can be changed flexibly with a resolution of around 

15 MHz by changing the number of the electrical spectral lines generated by the AWG. The 

bandwidth tuning resolution can be less than 15 MHz if we reduce the frequency spacing 

between the first and the second pump lines with a step less than 1 MHz, which is achievable 

by digital means. The gain spectra and phase responses of different filter bandwidths ranging 

from 50 MHz to 4 GHz are shown in Figs. 10(a) and 10(b) respectively. The SBS gain values 
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and the corresponding pump power levels are shown in Fig. 10(c). Note that in the 

experiment, we use two cascaded EDFAs to amplify the original weak pump. The needed 

pump power is dependent on the power of the original pump and the optical filter bandwidth 

between the two EDFAs. In Fig. 11 the passband ripple and filter gain are compared among 3 

conditions: only using feedback compensation (FB), using both FB and nonlinearity 

management (NM), using FB and NM in the single-peak fiber (SPF). The figures illustrate 

that in the third case the SBS filter has the largest gain and smallest ripple thus proving the 

validity of the NM in the SPF. 

 

Fig. 10. The (a) gain spectra and (b) phase responses of SBS filters with different bandwidths. 

(c) The corresponding pump power with different bandwidth. 

 

Fig. 11. The (a) passband ripple and (b) filter gain comparison among 3 conditions: only using 

feedback compensation (FB), using both FB and nonlinearity management (NM), using FB 

and NM in the single-peak fiber (SPF). 

Limited by the experimental equipment and proposed method, the extinction ratio of large 

bandwidth filter is small. The SBS gain limitation and the unwanted out-of-band SBS gain are 

the two main issues. As shown in Fig. 11(b) the SBS gain is decreased with the increase of 

the filter bandwidth. When the pump power is higher than several hundreds of mW [16], it 

starts acting as the Raman pump at the same time which will consume the SBS pump power. 

Therefore the SBS gain at large bandwidth cannot be effectively increased by simply 

increasing the pump power. A potential solution is using special fiber with high SBS gain 

efficiency such as Chalcogenide fiber [19]. The high gain at large SBS bandwidth can be 

achieved with smaller pump power. It will also mitigate the FWM effect and reduce out-of-

band gain to some extent. The filter extinction ratio can be further increased not only by 

increasing the SBS gain but also by the polarization characteristics of the SBS amplification 

[12]. Since the state of polarization (SOP) of the SBS amplified signal is governed by the 

SOP of the pump, it is easy to distinguish the in-band amplified signal from the out-of-band 

unamplified signal or noise just by using a polarizer before the receiver and controlling the 

pump SOP carefully. 

Another critical issue is the out-of-band gain which not only degrades the extinction ratio 

of the filter but also induces in-band crosstalk if the filtered signal will be combined with 

another signal. The crosstalk induced penalty is dependent on the modulation format [20, 21], 
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the original signal power [22] and also the frequency spacing from the filtered signal. If we 

take QPSK signal as an example where 16-dB crosstalk induces 1-dB penalty and assume that 

the added signal is 1-GHz away from the SBS amplified signal with the same power level, the 

maximum available filter bandwidth is ~2 GHz. 

4. Filter performance analysis and evaluation 

It is well-known that the Brillouin amplification is accompanied with strong noise [23].We 

analyze the noise performance of the proposed SBS filter by amplifying a signal with 200-

MHz single-frequency modulation and measure the signal to noise ratio (SNR). Figure 12(a) 

shows the spectrum of the SBS amplified signal. The spectrum is calculated from the 

waveform obtained by an oscilloscope with coherent detection since we do not have a high-

resolution optical spectrum analyzer (OSA). The proposed filter is 1.5 GHz wide with 20 dB 

gain and ~1 dB passband ripple. The symmetric frequency is due to the carrier-suppressed 

double-sideband modulation by the Mach-Zehnder modulator. We do not use the CW light as 

the signal since the DC noises from the oscilloscope is significant. The optical power of the 

single-frequency signal is fixed at ~-30dBm. Figure 12(b) illustrates the SNR variation trend 

with the increase of the filter bandwidth. Here we use the signal peak power and the average 

in-band noise power to calculate the SNR. The corresponding pump power is redrew here for 

information. Note that the SBS gain is decreased with the increase of the pump bandwidth. 

We define the SNR penalty at 0.5-GHz bandwidth as 0 dB since the SNR penalty is not 

obvious at small bandwidth case. As shown in the figure, the relative SNR penalty from the 

SBS filter is increased with the increase of the filter bandwidth, which can be explained as the 

reduced pump efficiency at large bandwidth case. When the bandwidth reaches 4 GHz, the 

relative SNR penalty is ~11.7 dB. Figure 12(c) demonstrates the SNR variation with different 

pump power but the same bandwidth of 2 GHz. The SNR penalty starts to increase when the 

pump power exceeds ~20 dBm. To sum up, the filter performance will be degraded gradually 

when the pump power is high or the filter bandwidth is large. The practical applications 

should compromise between high gain and large bandwidth. 

 

Fig. 12. (a) Electrical spectrum of the SBS amplified signal with single-frequency modulation. 

(b) The relative SNR penalty with different pump bandwidth. (c) The relative SNR penalty 

with different pump power but the same bandwidth of 2 GHz. 

To further validate the feasibility of the SBS based filter, we use the designed rectangular 

SBS filter to amplify the OFDM signal and then measure the system performance. We firstly 

generate a 2-GHz single polarization OFDM signal with QPSK and 16-QAM modulation 

format for each subcarrier. The OFDM signal is generated using an AWG with the sampling 

rate of 2.5-G Samples/s, corresponding to 2.4-Gb/s and 4.8-Gb/s net bit rate respectively with 

overhead for channel estimation, phase noise and dispersion compensations. 128 subcarriers 

are used taking into account the ~100-KHz ECL laser linewidth. For a more precise 

description of OFDM signal generation and detection, see references [4, 24]. Then we use an 

SBS rectangular filter with 2.1-GHz bandwidth and 19-dB gain to amplify the OFDM signal 

and evaluate the SBS filter performance. The power of the OFDM signal launched into 25-km 

fiber is around 10 dBm. The amplified OFDM signal is detected by intradyne coherent 

#215243 - $15.00 USD Received 4 Jul 2014; revised 15 Aug 2014; accepted 6 Sep 2014; published 16 Sep 2014
(C) 2014 OSA 22 September 2014 | Vol. 22,  No. 19 | DOI:10.1364/OE.22.023249 | OPTICS EXPRESS  23258



receiver followed by high-speed real time oscilloscope and the QPSK and 16-QAM 

constellations are achieved by off-line processing [24]. The off-line processing also allows us 

to employ a digital filter with very sharp cut-offs so that the out-of-band SBS gain will not 

induce any penalty. Figures 13(a) and 13(b) show the QPSK constellations without and with 

the SBS filter respectively, while Fig. 13(c) shows the corresponding error vector magnitudes 

(EVMs) for each data subcarrier. For fair comparison, the received power at the coherent 

receiver is tuned at 12 dBm for both cases, corresponding to the optimal received power of 

the coherent receiver therefore the performance degradation is only from the SBS 

amplification noise. Figure 14 show the 16-QAM constellations and the corresponding EVMs 

without and with the SBS gain filter. The EVM penalty is only ~0.04 for both QPSK and 16-

QAM cases, which proves the SBS gain induced penalty is not significantly, validating the 

feasibility and usefulness of the proposed rectangular SBS gain filter. 

(a)

(b)

(c)

 

Fig. 13. The QPSK constellations (a) without and (b) with the SBS filter, (c) corresponding 

EVMs in two cases. 

(a)

(b)

(c)

 

Fig. 14. 16-QAM constellations (a) without and (b) with the SBS filter, (c) corresponding 

EVMs in two cases. 

5. Conclusions 

We have presented an ultra-flat rectangular optical filter based on stimulated Brillouin 

scattering and demonstrated a typical application of amplifying an OFDM signal with QPSK 

and 16-QAM modulation formats. On the foundation of the feedback process, we propose the 

method of utilizing unequal interval spectral lines to mitigate the nonlinear effects in electro-

optical components and fiber, meanwhile employing a fiber with only a single Brillouin gain 
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peak. As a result, the in-band gain ripple is further reduced to as low as ~1 dB. With flexible 

bandwidth from 50 MHz to 4 GHz and high tuning resolution of less than 15 MHz, the 

proposed steep-edged rectangular filter can find versatile applications in optical and 

microwave signal processing. 
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