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Abstract: The modeling and prediction of the ultrafast nonlinear dynamics in the optical fiber
are essential for the studies of laser design, experimental optimization, and other fundamental
applications. The traditional propagation modeling method based on the nonlinear Schrödinger
equation (NLSE) has long been regarded as extremely time-consuming, especially for designing
and optimizing experiments. The recurrent neural network (RNN) has been implemented
as an accurate intensity prediction tool with reduced complexity and good generalization
capability. However, the complexity of long grid input points and the flexibility of neural network
structure should be further optimized for broader applications. Here, we propose a convolutional
feature separation modeling method to predict full-field ultrafast nonlinear dynamics with low
complexity and strong generalization ability with high accuracy, where the linear effects are firstly
modeled by NLSE-derived methods, then a convolutional deep learning method is implemented
for nonlinearity modeling. With this method, the temporal relevance of nonlinear effects is
substantially shortened, and the parameters and scale of neural networks can be greatly reduced.
The running time achieves a 94% reduction versus NLSE and an 87% reduction versus RNN
without accuracy deterioration. In addition, the input pulse conditions, including grid point
numbers, durations, peak powers, and propagation distance, can be generalized accurately during
the predicting process. The results represent a remarkable improvement in ultrafast nonlinear
dynamics prediction and this work also provides novel perspectives of the feature separation
modeling method for quickly and flexibly studying the nonlinear characteristics in other fields.
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1. Introduction

Most systems inherently exhibit some interactions between linearities and nonlinearities, and
system outputs always change in variables over time [1,2]. Complex nonlinear dynamics
have long been regarded as challenging and unpredictable in many research fields, including
biology, chemistry, hydrodynamics, and engineering [3–5]. In terms of optics and photonics,
nonlinear pulse propagation in optical fiber waveguides is a typical complex nonlinear evolution,
especially for high-power ultrafast pulses. The analysis, control, and prediction of the ultrafast
nonlinear dynamics in optical fiber are of great importance in the development of laser design,
experimental optimization, remote sensing, and other fundamental researches [6–10]. The
nonlinear Schrödinger equation (NLSE) can accurately describe the pulse propagation in the
optical fiber, and the split-step Fourier method (SSFM)-based numerical solution has been proven
with high accuracy compared with pulse transmission in the experiment [11,12]. However, the
numerical methods typically involve high computation costs due to the requirement of many
iterative complex operations. The longtime simulation imposes a severe bottleneck in using
conventional methods to predict the complete pulse propagation in the optical fiber [13].
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Recently, machine learning has been used for nonlinear dynamics prediction or fiber transmis-
sion modeling due to its strong nonlinear data fitting ability, flexible design structure, and low
computation complexity. The physics-informed neural network (PINN) was proposed to study
the propagation of pulses based on NLSE [14], and the nonlinear dynamics of the pulses can
be predicted by applying physical knowledge under some conditions [15,16]. However, when
the initial pulse parameters change, the PINN should be re-trained. Namely, the generalization
ability of the PINN-based method is extremely limited. The recurrent neural network (RNN)
has been regarded as a good prediction tool for time-series data and applied to predict ultrafast
nonlinear dynamics with high accuracy and good generalization for multiple conditions [17].
This work aims to predict the intensity profiles of the time domain and spectral domain by two
separate NNs. And the phase information of pulses is neglected. In addition, due to the internal
loop unit of RNN, the parallelism and complexity of RNN are limited. A feed-forward neural
network (FNN) is introduced to predict intensity and phase profiles together in the temporal
(or spectral) domain with lower complexity but higher prediction errors [18]. In the work of
RNN and FNN, the input pulses are required to be truncated or down-sampled to keep at short
input grid points and low complexity [17,18]. When the input grid points cannot be turned to
short length manually in some cases and are as long as NLSE simulation, the computational
complexity of RNN and FNN will be higher. Furthermore, these structures can only predict
the input pulse with the fixed input length, so they can not realize the prediction of the flexible
pulse input length. Therefore, a faster and more flexible prediction method for full-field ultrafast
nonlinear dynamics with long input grid points is still an open issue.

Here, we focus on full-field pulse propagation modeling by collecting full-length temporal
pulses represented by complex numbers as training datasets. It inherently includes the phase
information by phase calculation from complex numbers and the spectral information by
performing the Fourier transform over the temporal pulses. This eliminates the need for two
separate models for temporal and spectral domains, and the complex number representation
allows applying some physical knowledge to the pulses. For fast and accurate ultrafast dynamics
predictions, the linear features are modeled by NLSE-derived methods, and nonlinear features
are modeled by a dedicatedly-designed convolutional neural network (CNN). This convolutional
feature separation modeling (FSM) method has advantages as follows (due to the accuracy
degradation of the FNN, our work is mainly compared with the RNN):

(1) The temporal relevance of nonlinear effects between the grid points can be reduced by
the FSM, resulting in a short local correlation in the time axis. In this case, the CNN
structure with much shorter kernel lengths can achieve accurate nonlinearity modeling.
The required parameters of CNN are only 0.14% of RNN at the 2048 pulse grid points.
The running time of NLSE, RNN, and CNN at 2048 points are 763s, 46s, and 5.9s, which
demonstrates a 94% reduction versus NLSE and an 87% reduction versus RNN.

(2) Compared with RNN, the simple CNN structure with FSM can achieve equal accuracy
within the training transmission distances and higher accuracy beyond the training distances.
This local correlation calculation structure is demonstrated with high stability and good
distance generalization capability.

(3) The strong generalization ability is also verified. The input pulse conditions (including
pulse durations and peak powers) and transmission distances can be generalized accurately
and quickly. Furthermore, based on convolution computation, pulse propagation with
dynamic input pulse lengths can be flexibly achieved by CNN. On one hand, the pulse can
be truncated to a shorter length for complexity reduction. On the other hand, the input
length can be elongated for multiple pulse propagation.

The results demonstrate that the CNN with FSM is a full-field ultrafast nonlinear dynamic
prediction method with high accuracy, strong generalization ability, and low complexity. This
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work also provides a new perspective of feature separation modeling with local correlation
calculations for fast and accurate nonlinear dynamics studies in other fields.

2. Principle of the convolutional feature separation modeling method

Ultrafast pulse propagation in optical fiber has rapid nonlinear changes determined by the interplay
between a range of nonlinear and linear effects. Specifically, the linear effects always lead to long
temporal dependency between the grid points of pulses [19]. The nonlinear effects are determined
by the input pulse power and the fiber channel characteristics. The interaction between the linear
and nonlinear features accumulates along with transmission. To predict nonlinear dynamics fast
and accurately, the proposed prediction method considers the temporal and distance dependency
of pulses by separately modeling the linear and nonlinear features and injecting the multiple
preceding known pulses into NN.

We use the numerical solution method to generate training data at different distances with the
same distance interval. Note that the distance interval of the training dataset is set larger to reduce
the complexity compared to that in the NLSE simulation. The data is represented by the real and
imaginary parts, so the temporal intensity profiles and phase profiles can be directly generated by
one NN. And the spectral profiles can also be easily obtained by Fast Fourier Transform (FFT).

The schematic of the convolutional FSM architecture is presented in Fig. 1(a), where the
modeling procedure is divided into 2 steps: NLSE-derived linear model for linear feature
modeling and the CNN-based nonlinear model for nonlinear feature modeling. The CNN model
contains the input layer, 1-dimensional convolution (conv1d) layers [20], dense layers, and output
layer. The iterations are implemented for the longer transmission distance.

A detailed scheme of the CNN structure with FSM and the data arrangement are illustrated in
Fig. 1(b). First, the pulses from previous distances (form z-10∆z to z-∆z) should be collected
while predicting the output pulse of distance z. ∆z is the interval distance we set along the
propagation direction. When predicting the first interval distance (z=∆z), the input previous
pulses are the same as the input pulses, i.e. A(-9∆z), . . . , A(-∆z)=A (0), where A represents the
optical pulse profile. The input pulses of multiple distances can improve the prediction accuracy
and the optimal distances number is set to 10 by the ergodic parameters search. During the
prediction process, the output pulse of distance z is fed back to the input for the pulse prediction
of the next distance A(z+∆z). The iteration operation also provides NN with the distance
generalization ability.

Second, the NLSE-derived linear model is implemented in one interval distance by prior
knowledge, which can be expressed by

Ã(ω, z + ∆z) = Ã(ω, z) exp

(︄
j
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where ω is the frequency component, βk is the dispersion coefficients associated with the Taylor
series expansion of the propagation constant β(ω) . This linear modeling operation can achieve
the long-time dependency feature modeling in one step. This process is based on the physics
knowledge described by NLSE. Therefore, the linear features can be modeled accurately and not
depend on the neural network performances. In addition, this FSM method can be used when
the dispersion exists, and has few restrictions for longer distance transmission. FSM method
has been used for long-haul multi-channel optical fiber transmission modeling, which shows the
effectiveness of this method in wide applications [21].

After the linear modeling operation, conv1d layers and local dense layers are used for nonlinear
feature modeling. The convolution kernel length and dense layers dimension we use is relatively
small, where a hypothesis that the nonlinear features are short-time dependency is introduced.
If linear and nonlinear are modeled together, NN is required to model the global long-time
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Fig. 1. The architecture of the convolutional neural network (CNN) with feature
separation modeling (FSM). a, Schematic of the convolutional FSM architecture, showing
the NLSE-derived linear model, CNN-based nonlinear model and the iteration steps for
longer propagation. b, The detailed structure and data arrangement of the CNN with FSM.
The pulses from the previous distances are implemented by linear feature modeling first.
And the pulse data are arranged to form a two-dimensional matrix D× 2P, where D is 10
presenting the previous distances number, P is the pulse grid points, and 2P represents each
complex number represented by two real numbers. Then 3 conv1d layers and 4 hidden
dense layers with shared parameters are applied for the nonlinear feature modeling. The Ch
represents the channel number of the kernel in each conv1d layer. The matrices are shown
by rectangles with different colours representing different processing stages, and the colour
depth of each small square in the matrix indicates the data values.

correlation, which will lead to a rapid increase in complexity and the number of parameters. We
adopt the method of linear and nonlinear FSM, which can realize local correlation modeling and
effectively reduce the parameters and complexity of NN.

As shown in Fig. 1(b), the detailed CNN structure for nonlinear feature modeling consists of
convolutional layers and fully connected layers with shared parameters. The input data is arranged
in the form of a two-dimensional matrix, and its dimension is expressed as (D× 2P), where D
represents the pulses number of preceding distances, and P represents the complex grid points
of a pulse. The 2P term refers to real (R) and imaginary (I) parts of P grid points, because the
inputs of NN are typically real numbers. The use of a complex-valued neural network is of future
discussion and is not covered. After rearrangement, several layers of one-dimensional convolution
operation are carried out for local correlation extraction. Each convolution operation contains
multiple channels (Ch). The size of the convolution kernel relates to the output dimension we
designed. We keep the output dimension of each convolutional layer at (Ch×P), which can be
achieved by setting the stride size and padding number.

After obtaining the convolutional layer output, the data of each column (dimension is Ch)
is processed by a small fully-connected NN respectively and mapped to the prediction data
corresponding to the time grid point. Compared to the method of expanding into one-dimensional
data and then fully connecting, our proposed method can effectively reduce the scale and
complexity of the dense NN structures. After the local correlation extraction by the convolutional
layer, the output data contain the coincident distribution or characteristics. On the basis of
this intuition, we share the parameters among the fully-connected NNs, which enables the NN
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structure with fewer parameters and fast convergence. The input of each dense layer is (Ch×1)
and the dense layer output dimension is set as 2, representing a complex point. The total number
of the fully-connected NNs is P, corresponding to the column number of convolutional layer
output. The outputs of these fully-connected NNs are concatenated to form the output with length
2P, which represents the pulse prediction of the next distance z.

During the training process, the mean absolute error (MAE) loss between the predicted pulse
and the actual pulse in the label is calculated for NN training. Through the hyperparametric
search, the number of convolution layers we set is 3 and the fully connected hidden layer is 4.
The channel number of the kernel is 90, i.e. Ch= 90. We select the convolution kernel size as 18
for the first conv1d layer, and 9 for the other two conv1d layers. If the FSM method is not used,
the kernel size should be larger to maintain high prediction accuracy. The hidden dimension of
the dense layer is the same as the input layer. The optimizer is RMSprop [22] and the epoch
number is 120. The learning rate is initialized as 1e-3 and then decreases with the epochs based
on a cosine annealing with the warm restart schedule [23].

The above descriptions stress that CNN with FSM can predict the full-field ultrafast nonlinear
dynamics without any pulse truncation by one NN. Meanwhile, the convolution kernel is fed
with fixed-length data at a time and then slid continuously to cover the full input data length.
Therefore, one convolution kernel flexibly supports the dynamic processing of different input
pulse lengths, which allows truncated or extended pulses beyond the points number of the training
pulses. We demonstrate two applications of dynamic input pulse lengths capability in predicting
phase. The first one, as shown in Fig. 2, is to dynamically truncate pulses to only apply the NN
model on the high-energy portion. This can help reduce prediction calculation costs, which will
be further discussed in the complexity section. The second one is to accept multiple input pulses
in one elongated window. This is useful to apply a trained model on longer input pulse lengths
without re-training, which will be further investigated in the generalization section.

Fig. 2. The diagram of the dynamic input pulse length to CNN based on FSM. A
threshold can be defined by the user demands and channel conditions in each step to separate
the high power and low power pulses. The pulses after linear model with high power are
input to the CNN for nonlinear modeling. The pulses after linear model with low power are
directly duplicated to the output predicted pulse.

3. Nonlinear dynamics modeling setup and results

3.1. Modeling setup

To verify the nonlinear dynamics prediction capability of the proposed CNN structure based on
the hybrid modeling method, we need to obtain the fully nonlinear evolution map of injected
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ultrafast pulses in the optical fiber as the training data set. We chose two typical ultrafast nonlinear
scenarios: higher-order soliton (HOS) compression, and broadband optical super-continuum (SC)
generation [24]. This FSM method and CNN structure can also be applied to other NLSE-like
cases. Note that when the scenarios change, the parameters need to be reset. For example, when
the modeling distance is much longer, larger step length of NN is required. Otherwise, the training
data set is very large and the training time will be very long. When the step length is long, the
dispersion will also increase, so the kernel size should be a little larger. The parameters for both
cases are selected by the previous typical works and listed in Table 1 [12,23]. In the first case,
the pulse duration ∆τ (full-width at half-maximum, FWHM) and peak power P0 are randomly
varied from 0.77-1.43ps and 18.4-34.2W. The soliton number N =

√︂
γP0T2

0/|β2 | in this field is
varied from 3.5 to 8.9 (γ is the nonlinear parameter, β2 is the group velocity dispersion parameter,
and T0 = ∆τ/1.763). The total transmission distance of the training data is 1300 cm and the
step distance length of NN is 13 cm, so the total iteration steps of NN is 100. We demonstrate
the input pulse points number, duration, peak power, and distance generalization beyond the
training dataset conditions in this case. The input peak power of SC generation varied from
500W to 2000W, and the pulse duration is fixed at 0.1ps. SC generation process includes more
complex nonlinear dynamics induced by Raman and self-steepening effects. The results of the
SC generation verified the ability of complex nonlinear dynamic prediction. The grid points of
the training pulse are 1024 and 2048 for HOS compression and SC generation respectively. We
emphasize that the full pulse points can be predicted accurately and fast by the proposed CNN
structure with FSM.

Table 1. Modeling parameters

Scenarios HOS compression SC generation

FWHM (ps) [0.77,1.43] 0.1

Input peak power (W) [18.41,34.19] [500,2000]

Fiber length (cm) 1300 20

Step length of NN (cm) 13 0.1

Step length of NLSE (cm) 0.13 0.001

Temporal window size (ps) 10 5

Grid points 1024 2048

Training sets 2900 1250

Testing sets 100 50

Center wavelength (nm) 1550 810

Dispersion coefficient (psorder/km)
β2β3 β2, b3, b4, b5, b6, b7

-5.23, 4.27e-2 -9.59, 0.0784, -6.84e-05, -4.78e-07, 2.71e-09, -5e-12

Nonlinear parameter (W−1m−1) 18.4e-3 0.1

Fiber channel effects Self-phase modulation Self-phase modulation, Raman, Self-steepening

3.2. Results

3.2.1. Comparisons of different methods

To express the prediction gap between the NN-based model and the NLSE simulation quantitatively,
we record the prediction errors of different cases and conditions. The root normalized mean
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square error (RNMSE) can be described as

RNMSE =
1
n

∑︂
n

⌜⃓⃓⎷∑︁
p,d

∥︁∥︁An,p,d − Ân,p,d
∥︁∥︁2∑︁

p,d
∥︁∥︁An,p,d

∥︁∥︁2 , (2)

where A and Â represents the transmitted pulse represented by complex values simulated by
NLSE and NN-based model. The variables p and d represent the grid point and distance index. n
denotes the number of random input pulse conditions.

First, the RNN structure and our designed CNN structure with and without FSM are compared.
The RNN structure we test is the same as that in [17], consisting of 1 recurrent layer, 2 hidden
dense layers, and the output layer. The output dimension of the recurrent layer is the same as that
of the input and the previous pulse window is 10. Each input pulse consists of 1024 grid points
in the HOS compression scene, so the input dimension of each RNN cell is 1024 for full-length
pulse prediction. The kernel size of CNN is set to 18 whether FSM is performed or not, which
leads to a fair prediction accuracy comparison under the same complexity.

As shown in Fig. 3, the RNMSE vs. distance is presented to show the iteration errors during
the transmission. The results are tested under the conditions of HOS compression. Each RNMSE
is computed over the n = 100 full-time pulses in the testing dataset with different input conditions.
The distance before 13 m is trained, and the distance after 13 m is not trained to test generalization.
For both methods, prediction error accumulates over the propagation distances, because the
prediction errors at the previous distances will accumulate and further reduce the accuracy at the
subsequent distances. The RNMSE of CNN at 13 m showed a significant improvement from 0.15
without FSM to 0.09 with FSM. This highlights the effectiveness of FSM for CNN with small
kernel sizes. Other simulations are also implemented to show that the same level of accuracy
can be achieved without FSM by increasing the convolution kernel size (larger than 82), but the
complexity will significantly increase and the model with many parameters will be hard to train.
As for RNN, FSM operation has no effect on the prediction accuracy in this full-length input
structure. Since the full-length grid points are input to the RNN cell, global points computation
can be achieved, and thus realize good capability for channel effects (linear and nonlinear effects
together) modeling. With the FSM, the input points of each RNN cell can be shortened by a
sliding length-limited window for full-length modeling, which can reduce the input grid point
number and the computational complexity. Compared with the CNN structure, this operation of
RNN is required to be designed manually, resulting in a new data processing flow, which is not
within the scope of our article. Note that the errors of RNN after 13 m increase sharply, which
indicates the weakness of distance generalization. On the contrary, the iterative errors of CNN
increase steadily and keep at a lower level than RNN, which demonstrates the good distance
generalization ability and stability of the local corrections calculation structure. We emphasize
that while ensuring high performance, CNN with FSM has much lower complexity, which will
be further described in the complexity section.

3.2.2. Accuracy

We also present the detailed results of HOS compression and SC generation to present the
prediction accuracy of CNN with FSM. The overall pulse evolution with transmission distance
and detailed pulse profile at some distances are illustrated. The results are simulated using NLSE
and predicted by CNN with FSM for accuracy comparison.

Figure 4 illustrates the temporal intensity evolution (Fig. 4(a)), spectral intensity evolution
(Fig. 4(b)), and phase changes varied with time and distance (Fig. 4(c)) of HOS propagation
dynamics. The input peak power of these results is 30W and the duration is 0.8ps. The
corresponding soliton number is about 4.7. These conditions are never included in the training
dataset. From Fig. 4(a) and Fig. 4(b), one can see the high consistency between the pulse
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Fig. 3. The RNMSE vs. distances of CNN and RNN with (w) or without (w/o) FSM.
The RNMSE at each distance is averaged over the 100 full-time pulses in the testing dataset
with random input conditions.

propagation predicted by CNN with FSM and that simulated from NLSE on both temporal
intensity evolution and spectral intensity evolution. Note that the narrowest pulse presented in
temporal intensity evolution and maximum expansion presented in spectra intensity evolution
have an agreement in distance value, which demonstrates the prediction accuracy of maximal
compression distance. For clearer visual comparison, we select three distances (1.3 m, 7.8 m,
and 10.4 m) to plot the intensity profile in the temporal and spectra domain, where a great deal
of overlap of full-time and full-spectral intensity pulse are shown. The RNMSE over the full
temporal evolution is calculated as 0.028, which is a lower value than that of RNN and indicates
the high accuracy of the pulse prediction during the full evolution.

We also plot the pulse phase profiles in the time domain with different distances in Fig. 4(c) to
demonstrate the phase prediction accuracy of CNN with FSM. For the grid point p represented
by a complex number, the phase can be calculated as Phase(p) = arctan

[︂
I(p)
R(p)

]︂
, where I(p) and

R(p) represent the imaginary and real part of point p respectively. The phase value is in the range
of [-π, π], which can result in a discontinuous phase curve. Therefore, the phase unwrapping
algorithm is used to present a continuous and actual phase cures shape [25]. It can be seen that
the phase curves of NLSE simulation and CNN prediction have great coincidence, demonstrating
high phase prediction accuracy. The full field nonlinear dynamics prediction is successfully
achieved by the proposed CNN structure with FSM.

We next implement CNN with FSM to predict more complex nonlinear dynamics, i.e. the
generation of a broadband SC. This case considers the femtosecond pulses propagations in
the highly nonlinear fiber with anomalous dispersion, where the delayed Raman response and
self-steepening effects produce stronger nonlinear dynamics than self-phase modulation [26,27].
Results are shown in Fig. 5(a), and Fig. 5(b) for temporal and spectral intensity evolution
respectively. The associated intensity profiles at 1 cm, 6 cm, and 16 cm are also plotted. The
input peak power of these results is 1.6 kW. The excellent visual agreement between simulated
and predicted evolution maps can be seen from the temporal and spectral domains. For temporal
evolution, the generation process induced by high-order dispersion and Raman perturbation,
including initial compression, soliton fission, and dispersive emission [23], can be perfectly
described by the CNN. For spectral evolution, the generation processes, including dispersive
wave generation, continuous redshift, and extreme broadband spectrally output, are perfectly
reproduced by CNN. The RNMSE over the full spectral evolution is 0.08, which is a little higher
than that of the HOS compression case since the more complex nonlinear dynamics, but it is still
at a high accuracy level demonstrated by the accurate pulse profiles. Figure 5(c) plot the pulse
phase profiles in spectral domain simulated by NLSE and predicted by CNN. Since the drastic
phase change with the frequency, the phase unwrapping algorithm is also used for clear phase
curve comparations. The high coincidence proves the phase prediction accuracy by CNN with
FSM.
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Fig. 4. Temporal evolution, spectra evolution and pulse profiles of high-order soliton (HOS)
compression simulated by NLSE and predicted by CNN with FSM. a-b, Temporal (a), and
spectral (b) intensity evolution of NLSE (left panel) and CNN (right panel), and comparison
between the predicted (red lines) and simulated (blue lines) profiles at selected distances
(middle panel). c, Pulse phase profiles in time domain simulated by NLSE (blue dash lines)
and predicted by CNN (red dotted lines). All the results correspond to the input pulse with
0.8ps duration and 30W input peak power. The corresponding soliton number is about 4.7.

3.2.3. Generalization

It is well known that the generalization capability of a NN is of huge challenge and an important
criterion for applications. Only if a neural network can effectively generalize the input conditions
it can have a wide range of applications in practice. For ultrafast pulse propagation, different
input conditions always lead to different nonlinear evolution maps.

The input peak power and pulse duration are usually the points of interest for ultrafast pulse
studies. The generalization for durations and peak power was reported in previous literature,
where RNN is investigated [17]. Here, we demonstrate the generation capability of CNN for
different input conditions. The durations and peak power are randomly varied from 0.77-1.43ps



Research Article Vol. 30, No. 24 / 21 Nov 2022 / Optics Express 43700

Fig. 5. Temporal evolution, spectra evolution and pulse profiles of supercontinuum (SC)
generation simulated by NLSE and predicted by CNN with FSM. a-b, Temporal (a) and
spectral (b) intensity evolution of NLSE (left panel) and CNN (right panel), and comparison
between the predicted (red lines) and simulated (blue lines) profiles at selected distances
(middle panel). c, Pulse phase profiles in spectral domain simulated by NLSE (blue dash
lines) and predicted by CNN (red dotted lines). All the results correspond to the input pulse
with 0.1ps duration and 1.6 kW input peak power.

and 18.4-34.2W in the training dataset. Therefore, the designed CNN can realize accurate
predictions among these ranges. To demonstrate the generalization ability of CNN with FSM, we
show the temporal intensity profile with different durations and input peak powers in the HOS
compression case. These selected conditions are handed picked and simulated separately. We
investigate the generalization against input pulse conditions in Fig. 6. In the upper two rows of
Fig. 6, the durations are both 0.8ps, and the input peak powers are 20W and 30W respectively. In
the first row and the third row, input peak powers are both 20W, and the durations are 0.8ps and
1.4ps. Under these three sets of conditions, the input pulses compressed and fissured at different
rates, causing vastly different pulses shapes at the same distance. Pulses simulated by NLSE and
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CNN show a great deal of overlap at distances, which shows the generalization ability against
input pulses durations and peak powers.

Fig. 6. Generalization capabilities validation of CNN with FSM for high-order soliton
compression temporal dynamics. Pulse intensity profiles at selected distances for different
input conditions are shown, including 0.8ps duration and 20W input peak power (the first
row), 0.8ps duration and 30W input peak power (the second row), and 1.4ps duration and
20W input peak power (the third row). The distances presented are 1.3 m, 7.8 m, 10.4 m, and
19.5 m. Among them, 19.5 m exceeds the maximum length in the training dataset (13 m).

Besides generalization over input conditions, we next test and demonstrate the ability of CNN
to predict distances farther than the training set, which is the first investigation for the distance
generalization capability. The fourth column of Fig. 6 shows the prediction result at 19.6 m,
150% of the training transmission length of 13 m. The results are acquired by further iterating
the CNN model by another 50 steps beyond the original 100 steps. Although the RNMSE of
the pulse at 19.6 m is larger than that within the training distance conditions, the temporal peak
location and intensity agree very well between NLSE and CNN prediction. The pulse difference
mainly comes from the low energy part of the pulse base, and the pulse at high power is accurate
to maintain the pulse shape and reflect the nonlinear dynamics. The ability to predict beyond the
distances in training data shows that CNN does learn the nonlinearity features of ultrafast pulse
propagation. As far as we know, such generalization has not yet been reported in the literature
concerning ultrafast pulse propagation modeling.

We also test the generalization ability of CNN with FSM for the scenario of SC generation.
As the pulse condition setting shown in Table 1, the input peak power is ranging from 500W to
2000W, and the fiber length is within 20 cm in the training dataset. The generation results are
presented in Fig. 7. We show the temporal intensity profile with different input peak powers and
transmission distances in the SC generation case. The input peak powers are set 673W, 1014W,
and 1390W for presentation. These selected conditions never occurred in the training dataset.
The transmission length changes between 1.0 cm and 35 cm, which reaches 175% of the training
distance. Pulses simulated by NLSE and CNN show a great deal of overlap at different settings,
which shows the good generalization ability for different input peak power and distances for the
scenario of SC generation.

The flexibility of CNN also enables modeling multiple input pulses in one elongated window.
In Fig. 8 we extended the temporal window size from 10ps to 40ps and corresponding grid points
from 1024 to 4096. This enabled inputting 4 pulses of different durations and peak powers at
once. All peaks propagated with great accuracy compared to NLSE simulations. This example
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Fig. 7. Generalization capabilities validation of CNN with FSM for super-continuum
(SC) generation temporal dynamics. Pulse intensity profiles at selected distances for
different input peak power are shown, including 673W (the first row), 1014W (the second
row), and 1390W (the third row). The distances presented are 1.0 cm, 16.0 cm 28.0 cm and
35.0 cm. Among them,35.0 cm exceeds the maximum length in the training dataset (20 cm).

demonstrated CNN’s generalization ability of pulse duration, power, transmission distance, and
simulation grid size.

Fig. 8. Propagation of multiple pulses in single simulation. The pulse number in the
training dataset is only one. During the testing process, the input points number can be
elongated to form multiple pulses with different conditions. Results is test in the high-order
soliton compression case.

3.2.4. Complexity

In order to compare the complexity of RNN and CNN, we theoretically calculate the total numbers
of NN parameters and multiplication computations. The parameters number directly reflects the
running memory and the multiplication number is a common criterion to evaluate the complexity
of an algorithm [28].

The CNN structure is described in detail above. The RNN structure we test is the same as
that in [17], and is also described above. Although both models can reduce the dimension
of the input layer through the operation of truncating input pulse, to more fairly compare the
complexity of the two structures, we do not truncate when calculating the number of parameters
and the multiplications. Figure 9(a) illustrates the number of parameters vs. the pulses grid
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points number of RNN and CNN. One can see that the parameter quantity of RNN increases
quadratically with the number of input points since the dimension of the hidden layer is the same
as the input layer. If the hidden dimension is fixed at a small level, the number of parameters can
be reduced with a linear trend, but the accuracy will be reduced. The parameters of CNN remain
unchanged with the increase of points, because the designed CNN structure is independent of
the number of input pulses grid, as shown in Section 2. The parameters required by CNN are
much less than RNN. Specifically, RNN needs about 14 billion parameters at the 2048 pulse grid
points, while CNN remains constant at about 200 thousand. Namely, the required parameters
of CNN are only 0.14% of RNN at the 2048 pulse grid points, which achieves a magnitude of
decrease. The much smaller parameter count can greatly reduce the storage cost.

Fig. 9. The number of parameters (a) and multiplications (b) of CNN and RNN. The
grid point number refers to the sampled pulse length input to the neural network. Note that
the input pulses are not truncated for a fair comparison between different models.

The number of multiplications vs. the grid points of RNN and CNN is illustrated in Fig. 9(b).
The results show the nearly linear increase of CNN and the quadratic increase of RNN. The trend
with the pulse grid points is determined by the structure and dimension of NN. The multiplication
numbers of CNN and RNN with 2048 pulse points are 400 million and 14 billion respectively.
With the increase of grid points number, the complexity reduction benefited from the CNN
structure becomes more obvious. The much fewer multiplication number of CNN demonstrates
the better low computational complexity of CNN.

We also record the running time of the CNN, RNN, and NLSE under the same hardware and
software conditions. The NLSE is implemented by the classical separate step Fourier method.
The channel conditions setting is the same with SC generation. The codes of these three methods
are run on the same server with two Intel Xeon Gold 6146R processers using Python. The
model for each condition runs five times and gets an average value as the time results. As shown
in Fig. 10, the time increases with the grid points and the realization number on the central
processing unit (CPU), and the CNN time is shorter than RNN and NLSE. For example, 10
realizations for different pulses with 2048 points take about 763s by NLSE, 46s by RNN, and
5.9s by CNN. The running time of CNN achieves a 94% reduction versus NLSE and an 87%
reduction versus RNN. If NNs are run on the graphics processing unit (GPU), the time can be
further reduced.

In addition, the input pulse can be truncated to accelerate the operation time as shown in Fig. 2.
This is done dynamically and does not require retraining the model. In the HOS compression
and 100 realizations case, the input pulse includes 1024 complex points initially and it may be
truncated to 760 points with a 5% increase in RNMSE, and the time can be reduced to 13s from
19s. In SC generation, the input pulse includes 2048 complex points initially and it may be
truncated to 970 points with a 0.2% increase in RNMSE, and the time can be reduced to 18s
from 50s with 100 realizations.
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Fig. 10. The running time to compute evolution maps of supercontinuum using NLSE,
RNN, and CNN with FSM on CPU. The transmission distance is 20 cm, and the number of
computed maps is 10 and 100.

The above results demonstrate that CNN with FSM can accurately, flexibly, and rapidly predict
the full-field ultrafast nonlinear dynamics. The intensity and phase information of the full-length
input pulse in both temporal and spectral domains can be predicted. Compared with RNN,
the CNN with FSM presents equal accuracy within the training transmission distances and
higher accuracy beyond the training distances. Since the local convolution computation, the
input pulse length can be flexibly shortened and elongated. This work provides a more flexible
nonlinear dynamics prediction method. In addition, after the linear feature modeling by the
traditional model-driven method, the residual nonlinear feature can be regarded as short-time
dependent relations. Then the CNN structure with fewer parameters can be applied for local
feature computation, which leads to a prediction method with a much shorter running time.
Finally, the CNN with FSM can achieve high accuracy, robust generalization, and low complexity.

4. Conclusion

In conclusion, we propose a convolutional FSM for nonlinear dynamics prediction of the full-field
ultrafast pulse evolution. Compared to the existing methods, our proposed method generalizes
better and runs faster because of the designed small-scale CNN structure and the linear-nonlinear
feature separation operation. The high-degree overlaps of intensity and phase profiles and low
RNMSEs demonstrate the accuracy of our proposed method. At the 2048 pulse grid points,
the required parameters of CNN are only 0.14% of RNN, and the lower complexity results
in an 87% reduction in computing time compared to RNN. In addition, the generalization
ability of the modeling scheme under different input pulse conditions is also verified. The CNN
structure can realize dynamic input pulse length prediction in the testing process due to the
local correlation computing capability. We believe this FSM method with the computation of
the local correlation will have positive impacts on future nonlinear physics research attributed
to the flexible, high-accuracy, and low-complexity design for nonlinear dynamics analysis and
prediction.
Funding. National Natural Science Foundation of China (62025503).
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