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Transformer-Based Long Distance Fiber Channel
Modeling for Optical OFDM Systems

Niuyong Zhang, Hang Yang , Zekun Niu , Lizhuo Zheng , Cao Chen , Shilin Xiao , and Lilin Yi

Abstract—The fiber channel model plays an essential role in
the simulation and design of optical fiber communication systems.
However, it is difficult for conventional model-driven modeling to
balance accuracy and efficiency, especially in optical orthogonal
frequency division multiplexing (OFDM) systems with complex
and long-haul transmission. We introduce the simplified Trans-
former into optical OFDM systems and combine it with the fea-
ture decoupled distributed (FDD) scheme for fast and accurate
fiber channel modeling. Unlike the popular Transformer architec-
tures, we remove the Decoder part and cancel the self-attention
with quadratic complexity, significantly reducing the computa-
tional cost. The modeling performance is investigated from the
nonlinear fitting capability, accuracy, and generalization ability.
The transmission distance ranges from 80 km to 1600 km. The
highly matched four-wave mixing (FWM) power, low error vector
magnitudes (EVMs), and similar signal-noise ratios (SNRs) demon-
strate the high precision and robustness of the model. Furthermore,
the modeling is studied under different transmission rates and is
proved to be reliable over a wide transmission bandwidth. Com-
pared to the bidirectional long short-term memory (Bi-LSTM), the
Transformer performs better in accuracy and has lower computa-
tional and memory costs. For modeling under the same conditions,
the required running time of the Transformer is about 60% of
Bi-LSTM, less than 1% of the split-step Fourier method (SSFM).
The Transformer-based method achieves high precision modeling
of the fiber channel in the long-distance and high-rate optical
OFDM system and makes a significant breakthrough in complexity.

Index Terms—Split-step fourier method (SSFM), bidirectional
long short-term memory (Bi-LSTM), feature decoupled distributed
(FDD), fiber channel modeling, optical orthogonal frequency
division multiplexing (OFDM), transformer.

I. INTRODUCTION

THE modeling of optical fiber channels is essential for
the simulation and design of optical transmission sys-

tems. The signal transmission in optical fiber can be described
by the nonlinear Schrödinger equation (NLSE) [1], but it is
generally impossible to obtain its analytical solution directly.
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Traditional fiber channel modeling is based on the split-step
Fourier method (SSFM) [1]. As a model-driven method, it
obtains an approximate solution of the NLSE through iter-
ative calculations, meaning a high computational cost. Es-
pecially in the case of long-distance transmission, the num-
ber of iterations rises linearly, and its complexity will be
unbearable.

Machine learning (ML) as a data-driven approach has been
applied to fiber channel modeling to break the barriers of model-
driven approaches. ML algorithms such as generative adversarial
network (GAN) and bidirectional long short-term memory (Bi-
LSTM) show extraordinary potential in fiber channel modeling
[2], [3], and the modeling scenarios have evolved from simple
on-off keying (OOK) and pulse amplitude modulation 4 (PAM4)
to 16 quadrature amplitude modulation (16QAM) single-carrier
transmission system. However, GAN has limited accuracy due
to its training instability and mode collapse [4]. As a variant
of recurrent neural network (RNN), Bi-LSTM has high time
complexity due to its sequential computation. Furthermore, as
an overall modeling scheme, these works are difficult to extend
to more complex scenarios to accurately model all channel
effects during long-haul fiber transmission. As a hybrid model-
data-driven method, the proposed feature decoupled distributed
(FDD) scheme [5] greatly improves the accuracy of machine
learning-based fiber channel modeling. This work is based on
the Bi-LSTM algorithm, realized by linear-nonlinear decoupling
and recursive processing, and the transmission distance in multi-
channel wavelength division multiplexing (WDM) systems
reaches 1040 km. Nevertheless, the Bi-LSTM used still has high
complexity.

With the advantages of high spectrum utilization and disper-
sion robustness, optical orthogonal frequency division multi-
plexing (OFDM) [6] is a research hotspot for realizing high-
speed and long-haul transmission. Distinguish from other op-
tical fiber communication systems such as WDM, OFDM
has the characteristics of high peak to average power ra-
tio (PAPR), dense channels, and narrow channel spacing,
which means stronger nonlinearity, especially four-wave mix-
ing (FWM) [7], [8], [9]. The higher the launched optical
power and the longer the transmission distance, the nonlin-
earity of fiber will increase accordingly. In addition, more
chromatic dispersion (CD) and amplified spontaneous emis-
sion (ASE) noise will accumulate over a long distance.
Therefore, it is challenging to model the optical fiber chan-
nel with total field effects, especially for optical OFDM
systems.
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Fig. 1. Architecture of the coherent optical orthogonal frequency division multiplexing (CO-OFDM) system. The system consists of transmitter, fiber channel,
and receiver, describing the generation, transmission, and post-processing of the optical OFDM signal. The machine learning-based approach replaces the split-step
Fourier method (SSFM)-based for fiber channel modeling.

The Transformer based on self-attention is an ML algorithm
that was proposed by Google Brain in 2017 [10]. It is used pri-
marily in the fields of natural language processing and computer
vision [11], [12]. Recently, Transformer performed the best in
many ML tasks [13], [14], [15], [16], becoming a dominant
model in ML. The innovation of using self-attention, which
captures global dependencies between input and output, avoids
the constraint of sequential computation and allows significantly
more parallelization [10]. Moreover, there are more merits to its
architecture, including the multi-head mechanism, the feedfor-
ward network (FFN), and the use of residual connection [17] and
layer normalization [18]. The Transformer has been proven to be
abstractable into general architecture [19]. The Transformer is
currently well acknowledged as the most powerful ML algorithm
for modeling sequential data [20], [21], [22], [23], [24] and has
significant advantages over RNN in computational efficiency.
Based on these characteristics and advantages of the model, it
is attractive to use the Transformer to model the fiber channel
more accurately and quickly.

In this paper, the Transformer is introduced into optical
OFDM systems for the first time to realize fiber channel mod-
eling, including the channel effects of CD, nonlinearity, and
ASE noise. We remove the Decoder part and cancel the self-
attention mechanism of the Transformer, and keep the multi-
head, residual connection, and FFN to make the model as simple
and accurate as possible. The FDD scheme is incorporated to
improve accuracy and generalization power for transmission
distance. Furthermore, a satisfactory model is obtained through
the optimization of the training dataset, the model training
improvement, and the design of loss function. The simulation
capability for nonlinearity is tested by measuring FWM power,
and the modeling accuracy is represented by error vector magni-
tudes (EVMs) and signal-noise ratios (SNRs). The complexity
analysis is carried out from two dimensions, the number of
multiplications and the running time. Additionally, the modeling
performance is investigated under different transmission rates,
including 30 GBd, 160 GBd, and 500 GBd. Results show that the
Transformer has high precision in simulating nonlinearity, with
the average relative errors of FWM power on 13 sub-channels
less than 1.3%. Low EVMs and similar SNRs demonstrate

that the Transformer-based model works on different OFDM
signals without performance degradation (whether with different
subcarrier numbers or different PAPRs) and outperforms the
Bi-LSTM in accuracy. In modeling of 1600 km, the multiplica-
tion number of the Transformer is about 55% of Bi-LSTM and
30% of SSFM, and the required running time is about 60% of
Bi-LSTM and 0.8% of SSFM, which highlights the superiority
of the Transformer-based modeling in complexity. Therefore,
the Transformer-based method realizes fast and high-precision
fiber channel modeling in the long-distance and high-rate optical
OFDM system.

II. SYSTEM ARCHITECTURE AND OPTICAL

FIBER CHANNEL MODELING

In this section, we build a coherent optical OFDM (CO-
OFDM) communication system for demonstration. The pro-
posed modeling method is also applicable for intensity mod-
ulation and direct detection (IM-DD) optical OFDM systems.
Our work aims to enable the Transformer-based optical fiber
channel to approximate the SSFM-based optical fiber channel
regarding its modeling ability.

A. Optical OFDM Communication System

To prove the feasibility of the Transformer-based fiber channel
modeling method in optical OFDM systems, a digital commu-
nication system based on coherent detection is built, as shown
in Fig. 1. Notice that all samples and symbols in this system are
represented by complex values.

At the transmitter, a binary sequence signal is first modulated
by 16QAM. After serial-to-parallel conversion, subcarrier map-
ping, inverse fast Fourier transform (IFFT), cyclic prefix (CP)
insertion, and parallel-to-serial conversion, pseudo-noise (PN) is
added before the serial OFDM signal for frame synchronization
operation at the receiver. To ensure that the digital signal is
equivalent to the analog signal, the OFDM signal is four times
up-sampling before entering the optical fiber channel, and the
signal shaping is performed through a root raised cosine (RRC)
filter to meet the Nyquist criterion of no inter-symbol interfer-
ence (ISI) [25]. Finally, after adjusting to a certain optical power
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TABLE I
PARAMETERS OF SSFM

by power normalization, the OFDM signal enters the fiber chan-
nel for transmission. When the OFDM multi-carrier modulation
conforms to Hermitian conjugate mapping, the real OFDM
signal required for intensity modulation will be generated, and
a photodiode detector (PD) can be used in the receiver to realize
direct detection. Then the system changes from CO-OFDM to
IM-DD optical OFDM.

At the receiver, the OFDM signal is first passed through
a matched RRC filter, and then digital backward propagation
(DBP) compensation [26] or CD compensation is used. The DBP
algorithm is a fiber channel compensation algorithm based on
SSFM, which can be regarded as the inverse process of fiber
channel modeling. After quadruple down-sampling, the frame
synchronization operation based on the known PN sequence
is followed. Then, corresponding to the transmitter, a series
of operations are performed to recover the required binary
data, including the serial-to-parallel conversion, CP removal,
fast Fourier transform (FFT), subcarrier demapping, parallel-to-
serial conversion, and 16QAM demodulation.

The entire optical fiber channel is composed of multiple spans
with the same structure, and each span contains two parts: stan-
dard single-mode fiber (SMF) and erbium-doped fiber amplifier
(EDFA) [27]. EDFA is used for optical signal amplification while
introducing ASE noise. Transmission of the OFDM signal in an
optical fiber channel is simulated by the SSFM at first. The main
optical fiber channel parameters are shown in Table I.

The propagation of an optical signal in SMF can be described
by the NLSE, which is expressed as [28]

∂u

∂z
+

jβ2

2

∂2u

∂t2
− β3

6

∂3u

∂t3
= jγ|u|2u− α

2
u, (1)

where u is the complex envelope of the optical field, z is the
propagation distance, and t is the time. And α represents the
attenuation, β2 represents the group velocity dispersion param-
eter, β3 represents the slope of the group velocity dispersion, γ
represents the nonlinear coefficient.

We further adopt the FDD scheme when modeling the fiber
channel with Transformer. As shown in Fig. 1, in each span, the
nonlinear effects are modeled by a neural network (NN), and the
linear effects are modeled by the NLSE-derived method in one
step. Linear-nonlinear feature decoupling [5] is implemented on
the output signal to eliminate linear effects. This can reduce the

ISI length and strengthen the nonlinear characteristics of data,
dramatically improving modeling accuracy while maintaining
low complexity. The linear decoupling is accomplished by CD
compensation [29], and the transfer function can be expressed
as

H(−L, ω) = exp

[(
−jβ2

2
ω2 +

β3

6
ω3

)
(−L)

]
, (2)

where L is the transmission distance.
The NN model is only used for fitting nonlinearity, so it needs

to add CD (the inverse process of CD compensation) through
the conventional method. The transfer function of CD modeling
can be expressed as H(L, ω). In this work, we set the linear
compensation and modeling distance at one span length.

B. The Transformer Settings

The conventional Transformer model consists of two parts:
Encoder and Decoder. Each Encoder layer has two sub-layers:
the multi-head attention layer and the FFN layer. Residual
connection is employed for each sub-layer, followed by layer
normalization. The Transformer is originally designed for neural
machine translation (NMT) tasks, so the Embedding needs to
be used to convert the input word vectors into numeric feature
vectors of a particular dimension. The positional encoding is
added to the feature vectors to compensate for the absence of
positional information in the self-attention mechanism. For each
feature vector, self-attention computes a weighted sum of the
features by the dot products with all other feature vectors to
form an output vector [10], which captures the dependencies
among all feature vectors. The structure of the Decoder is
similar to the Encoder. The difference is that the Decoder is
an autoregressive model that uses Encoder-Decoder attention
besides self-attention. The auto-regressive property is preserved
by masking, i.e., the information in the Decoder flows unidirec-
tionally in position order.

It is found that a pure self-attention network (SAN), that is,
the Transformer without residual connection and multi-layer
perceptron (MLP), loses its expressive ability exponentially in
terms of network depth [30]. Residual connection facilitates
optimization and gradient flow and plays an essential role in
preventing network degradation, which is also mitigated by FFN
[17], [30], [31]. The work of [32] shows that the multi-head
mechanism, residual connection, and FFN are keys to the Trans-
former model, and there is no additional benefit from source at-
tention on lower encoder layers. [33] replaces self-attention with
two cascaded linear layers and two normalization layers in the
Transformer architecture and further incorporates the multi-head
mechanism into the full MLP model, showing comparable or
better performance to the self-attention and some of its variants
in extensive experiments. The above researches indicate that
self-attention is not necessary for the Transformer, while the
vital things are the multi-head mechanism, residual connection,
and FFN.

In the nonlinearity modeling work, the self-attention brings
no additional benefit but leads to quadratic computational com-
plexity related to the number of input feature vectors. So, the
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Fig. 2. Structure of the simplified Transformer. Only the Decoder is used
here, and the self-attention is canceled. Each model layer has two sub-layers, a
multi-head mechanism, and a feedforward network. Residual connection is used
around each sub-layer, followed by layer normalization. The input data contain
samples of both the current time node and before-after time nodes, and the total
time nodes is set to 11.

self-attention mechanism is canceled. Furthermore, to enable
the data to be output in parallel to improve efficiency, only the
Encoder is used. The modified simplified Transformer architec-
ture is shown in Fig. 2.

The ISI caused by CD effects results in temporal correlations
among adjacent samples and can be captured using a sliding
window. With linear feature decoupling, a shorter ISI length is
preserved in the dataset, which means a smaller sliding window
is required. And the smaller the window size, the fewer the
NN parameters and the lower the computational complexity.
As shown in Fig. 2, the data is arranged into vector structures
through a sliding window, and each vector needs to contain both
the current time node and before-after time nodes. It is found that
when the sliding window contains 11 time nodes (five past time
nodes, one current time node, and five future time nodes), the
Transformer model achieves the best performance in most cases.
There are four samples per time node, and one sample consists
of two real numbers representing the real and imaginary parts
of a complex number. We can get the initial input dimension
as 11 × 4 × 2 = 88. The final output of the model focuses
on the samples of the current time node, avoiding the problem
of lacking position information. Therefore, there is no need for
positional encoding.

The Embedding is designed for the word vector in NMT,
which is unsuitable for waveform inputs. Thus, we remove
the Embedding layer from the Transformer. The low feature
dimension will lead to the underfitting of the model. To improve

TABLE II
PARAMETERS OF TRANSFORMER

the fitting ability of the model, we use the Linear layer with more
neurons to extract features. This process can be expressed as

X = Linear (Xin) = XinWin, (3)

where Win�Rd_in×d_model is the parameter matric, Xin�R1×d_in

is the initial input vector, and X�R1×d_model is the feature vector.
The d_in represents the initial input dimension, and the d_model
represents the feature dimension.

The multi-head mechanism allows the model to attend to the
information from different representation subspaces of the data
input [10], as shown in Fig. 2. The multi-head layer performs
multiple different linear projections on the input feature vector
and concatenates all the results to project once again to generate
an output vector. This process can be expressed as

V = MultiHead(X) = Concat(head1, . . . , headh)W o,
where headi = XWi,

(4)

where the projections are parameter matrices Wi�Rd_model×d_v

and Wo�Rhd_v×d_model, V�R1×d_model is the output,
d_v=d_mode / h, and h is the number of heads. “Concat”
means concatenating the h vectors of dimension 1×d_v into a
vector of dimension 1×hd_v.

The fully connected FFN consists of two linear transformation
layers, activated by a ReLU [34]. Expressed as

FFN(x) = max(0, xW1 + b1)W2 + b2, (5)

where W1�Rd_modeld×d_ff and W2�Rd_ff×d_model are the param-
eter matrices, and d_ff represents the feedforward dimension.

The output of the sub-layer after residual connection and layer
normalization can be expressed as

q = LayerNorm(x+Sublayer(x)), (6)

where Sublayer(•) is the function implemented by the sub-layer.
It represents the MultiHead(•) in the first sub-layer and the
FFN(•) in the second sub-layer. The q has the same dimension
as the input x.

The output of the Encoder is fed into a Linear layer to obtain
the final output, i.e., a vector Y�R1×d_out. And d_out represents
the final output dimension.

The parameters of the Transformer model are set as shown in
Table II.

C. Model Training Method

The preprocessing of the training dataset is shown in Fig. 3.
Notice that ASE noise will lead to difficult training because the
NN employed cannot directly handle random features. We do
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Fig. 3. Preprocessing of the training dataset. This process includes linear-
nonlinear decoupling, power normalization, and data arrangement.

not consider ASE noise and collect OFDM signal transmission
samples before and after a single span. Linear feature decoupling
is performed on the output signal to eliminate linear effects,
followed by unit power normalization. Unit power normalization
ensures the average absolute value of training data is around 1,
which is conducive to faster convergence and higher accuracy of
the model [3]. Finally, we arrange the data into vector structures
through a sliding window.

The samples collected from the second or later spans are
needed when forming the training dataset. The OFDM signal
undergoes four times up-sampling and passes through an RRC
filter before entering the fiber channel. For the first span of the
fiber channel, the high-frequency part (outside the OFDM signal
frequency band) of the input signal is almost completely filtered
out. After transmission through an optical fiber channel, the
signal’s frequency spectrum is broadened by nonlinear effects,
so its high-frequency part will also contain information. The
input signal of the first span is significantly different from that
of other spans in spectral distribution. Therefore, it is necessary
to avoid collecting samples from the first span.

The OFDM signal is transmitted for 10 spans, and we collect
samples from input-output signals of the 2nd, 4th, 6th, 8th, and
10th spans to form five datasets. After these five datasets are
preprocessed, including linear feature decoupling, unit power
normalization, and data arrangement, a total training dataset is
formed, ensuring sample diversity. In the training process, a
method of randomly selecting a dataset is adopted. An integer of
1-5 is randomly generated before the beginning of each training
epoch, then the dataset with the corresponding number is used
for the current training. We set epoch to 200 and batch size to
1000. The optimizer used is Adam [35], and the learning rate
(LR) is set to 1e-4 at the beginning and gradually decreases with
the training process.

The loss function is designed in the form of relative error.
Mean square error (MSE) is generally used for the training loss

function. It represents the average of the square of absolute
error between generated value and real value [36], which can
be expressed as

MSE =
1

N

N∑
i=1

(|Xgenerated,i −Xreal,i|)2, (7)

where N is the data length, Xreal is the real data, and Xgenerated

is the data generated by the NN model. It may be different for
the average power of different signals or different signal parts,
so there is no unified reference standard for MSE as an absolute-
like-error indicator. To a certain extent, MSE cannot truly reflect
the gap between generated and real value. Therefore, we refer
to the concept of relative error and design the loss function as

Loss =

∑N
i=1 (|Xgenerated,i −Xreal,i|)2∑N

i=1 (|Xreal,i|)2
. (8)

III. RESULTS AND DISCUSSION

In the simulation, we set the length of a single span to 80 km
and kept the launched optical power at 4 dBm. We adopt the FDD
scheme to model the long-haul optical fiber transmission. In the
FDD scheme, the modeling is based on one-span transmission.
In this case, the recursive input to the one-span model can realize
long-distance transmission. That is, the trained model is itera-
tively reused across all spans without training the corresponding
model for each span. The entire line is composed of multiple
spans with the same structure, and ASE noise is added between
adjacent spans. For example, a transmission distance of 1600
km consists of 20 spans of 80 km. For the training dataset, the
parameters of the OFDM signal are set as follows: the number of
subcarriers is 256, the length of one OFDM symbol is 320 after
adding the cyclic prefix, the total number of OFDM symbols is
12000, and the length of PN is 128. It can be calculated that the
data length of the total training dataset is (320 × 12000 + 128)
× 4 × 2 = 30721024.

The performance of the Transformer is presented from dif-
ferent dimensions, including the nonlinearity fitting capability,
accuracy, and adaptability to different OFDM signals (with
different subcarrier numbers and PAPR values). Moreover, the
modeling under different transmission rates is studied. Accu-
racy and complexity comparisons are also performed with the
Bi-LSTM. In the setting of Bi-LSTM, the number of LSTM
layers is 1, the number of Linear layers is 1, and no nonlinear
activation function is used. Each LSTM layer contains only two
cells, feeding the real part data into one cell and the imaginary
part data into the other. This approach resulted in a model
with higher accuracy and lower complexity than arranging the
input according to time nodes. Similarly, a sliding window
is employed to help Bi-LSTM grasp the correlation among
samples. It is found that in most cases, Bi-LSTM can achieve
optimal performance when the window contains 21 samples
(ten pre-samples, one current sample, and ten post-samples).
The final output of Bi-LSTM focuses on one sample. All the
parameters of Bi-LSTM are set as shown in Table III. Notice
that both Transformer and Bi-LSTM models are trained under
the same conditions, including the same training dataset, training
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TABLE III
PARAMETERS OF BI-LSTM

method, loss function, etc. Linear decoupling is performed for
all training datasets during preprocessing.

A. Nonlinear Fitting

The total optical field of the OFDM signal can be represented
as [37]:

u(z, t) =

N∑
i

ui(z, t) exp(−jΩit), (9)

whereΩi = ωi − ω0 ,ωiis the frequency of i-th sub-channel,
andω0 is the reference carrier frequency.

After substituting the OFDM signal (9) into the NLSE (1) and
simplifying it, the resulting equation for i-th sub-channel takes
the form:

∂ui

∂z
+Ωiβ2

∂ui

∂t
+

jβ2

2

∂2ui

∂t2
=

j

2
β2Ω

2
iui − α

2
ui + jγ

×
⎛
⎝|ui|2+2

N∑
q �=i

|uq|2
⎞
⎠ui + jγ

∑
m

∑
n

∑
k

umunu
∗
k. (10)

On the right of (10), the third term represents the self-phase
modulation (SPM) and cross-phase modulation (XPM) effects
related to the signal energy of i-th sub-channel. The last term
represents the FWM, and the triple sum is limited to those
frequency combinations that satisfy the matching condition [37]:
ωm + ωn − ωk = ωi,m �= i �= n, i = 1, 2, . . . , N .

It is easy to meet the frequency matching condition of FWM
for the OFDM signal because of the dense sub-channels and
the narrow and equal channel spacing. Therefore, compared
with other multi-channel optical fiber transmission systems, the
FWM in optical OFDM systems will be more serious, which
becomes the main nonlinear damage. In addition, the power of
FWM noise in the center of the OFDM band will be higher
relative to the edge [7], [38], [39].

It can be seen from (10) that for i-th sub-channel, the genera-
tion of SPM and XPM on it must involve the participation of the
i-th subcarrier, while the FWM can be generated by the com-
bination of only other sub-carriers when satisfying frequency
matching (without the participation of the i-th subcarrier). As-
suming that a sub-channel is empty when entering optical fiber,
then only FWM noise is generated on this sub-channel during
transmission.

We verify the accuracy of the Transformer for simulating
nonlinear effects by testing the FWM power. The FWM noise

Fig. 4. Four-wave mixing (FWM) power values on each of 13 sub-channels at
different transmission distances with ASE noise. The fiber channel models are
the Transformer based (blue, circles) and the SSFM based (red, triangles).

power is obtained by setting a specific sub-channel empty before
IFFT at the transmitter and then measuring signal power on the
corresponding sub-channel after FFT at the receiver. Notice that
DBP compensation will eliminate nonlinear effects, including
the FWM noise, so only CD compensation is utilized at the
receiver to obtain pure FWM noise.

We select 13 sub-channels of the OFDM signal (a total of
256 sub-channels) and record the FWM noise power generated
thereon when transmitting 400 km, 800 km, 1200 km, and 1600
km, respectively. Fig. 4 shows the matching of FWM noise
power simulated by the Transformer and the SSFM with ASE
noise. The FWM noise power simulated by the Transformer is
highly consistent with the SSFM, and the difference is within
a small range. The FWM noise power follows the distribution
where the center of the OFDM band is higher than the edge. The
average relative errors of 13 sub-channels are 0.38%, 0.64%,
0.97%, and 1.24% at 400 km, 800 km, 1200 km, and 1600 km,
respectively. Considering the extreme sensitivity of FWM power
(cubic correlation), the results suggest that the Transformer
simulates nonlinear effects very well.

B. Accuracy and Generalization

High PAPR makes OFDM signals more sensitive to phase
noise and nonlinear effects [40] and has long been considered
the main drawback of OFDM. The high PAPR characteris-
tic of the OFDM signal stems from the multi-carrier nature
caused by overlapping sub-carriers after the IFFT block. When
the phases of multiple sub-carriers are similar, the superim-
posed power will be much larger than the average power,
resulting in a relatively high PAPR [41]. The PAPR depend-
ing on the transmitted signal can be calculated by finding
the ratio between the peak power and the average power
[42]. The PAPR of the time-domain OFDM signal can be
defined as

PAPR(dB) = 10log10
max

(
|u(t)|2

)
E
(
|u(t)|2

) , (11)
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Fig. 5. Error vector magnitudes (EVMs) of optical OFDM signals with various
sub-carrier numbers and peak to average power ratios (PAPRs) at different
transmission distances. The fiber channel models are the Transformer based
(dashed, blue ellipse) and the bidirectional long short-term memory (Bi-LSTM)
based (dashed, red ellipse). The sub-carrier numbers and PAPRs are set as 256
and 10.72 dB (blue, circles), 512 and 11.36 dB (red, triangles), 1024 and 11.97
dB (black, diamonds), and 2048 and 12.69 dB (cyan, pentagrams). (a) Without
ASE noise and (b) with ASE noise.

where E(•) denotes the average calculation.
An ideal optical OFDM fiber channel model should be highly

accurate and suitable for different OFDM signals, including with
different subcarrier numbers and different PAPRs. We select
OFDM signals with 256, 512, 1024, and 2048 sub-carriers to test
the adaptability of the Transformer. Theoretically, the bigger the
number of sub-carriers, the higher the probability of high PAPR.
Without loss of generality, this correlation of PAPR and sub-
carrier number is considered when generating OFDM signals.

To evaluate the performance of the Transformer on waveform
simulation, EVM [43] as a function of transmission distance is
investigated. Here EVM is defined as the relative error between
the signal generated by the ML algorithm and the signal simu-
lated by the SSFM, expressed as

EVM =

√∑N
i=1 (|Xgenerated,i −Xreal,i|)2∑N

i=1 (|Xreal,i|)2
× 100%, (12)

where Xgenerated represents the symbols of the signal generated
by ML algorithms, and Xreal represents the symbols of the signal
simulated by SSFM.

Fig. 5(a) and (b) show the EVMs of OFDM signals simulated
by the Transformer and the Bi-LSTM at different transmission

distances, without and with ASE noise. The EVM calculations
are for OFDM signals directly from the end of the fiber link
without compensation or equalization. Notice that the same ASE
noise is added at the same node of the ML algorithm-based
model and the SSFM-based model, which will not cause wrong
calculation results by random effects.

The fiber channel noise mainly comes from nonlinear noise
and ASE noise. From Fig. 5(a), the EVMs are at a low value,
below 4%. It shows that the NN model simulates the nonlinear
noise of the OFDM signal with high precision on the waveform.
Although the NN model is trained on the dataset without ASE
noise, it still has high accuracy in the presence of ASE noise.
Fig. 5(b) shows that all the EVMs with ASE noise increase by
less than 2% compared to those without ASE noise, and the loss
of modeling accuracy is within a small range. It indicates that the
model has the robustness to ASE noise and accurately simulates
the overall fiber channel noise.

The EVM value increases linearly with distance, which is
caused by the accumulated error from iteration. The change
of subcarrier number or PAPR does not bring significant per-
formance degradation, whether for the Transformer or the Bi-
LSTM. The generalization ability of the two models is strong,
and they maintain stable performance for different OFDM
signals. In terms of accuracy, the Transformer is even better.
Whether with or without ASE noise, the OFDM signals sim-
ulated by the Transformer have lower EVMs. For the OFDM
signals with 2048 sub-carriers at 1600 km, the EVM of the
Transformer is 2.06% and 3.97% without and with ASE noise,
3.64% and 5.33% for Bi-LSTM.

We also measure the signal-to-noise ratio (SNR) of the OFDM
signal after subcarrier demapping at the receiver. The SNR
reflects the communication quality of the optical OFDM system.
The SNR is defined as

SNR = 10log10

(
Ps

E|Rx− Tx|2
)
, (13)

where Rx and Tx are the received and transmitted samples, Ps

represents the signal power.
Fig. 6 shows the SNRs of OFDM signals transmitted by

different fiber channel models for 400 km, 800 km, 1200 km,
and 1600 km, with the addition of ASE noise. Notice that DBP
compensation is performed here. The SNR difference ranges
from 0.60 dB to 1.02 dB between the Transformer and SSFM and
1.43 dB to 2.44 dB between the Bi-LSTM and SSFM. The results
show similar communication quality for optical OFDM systems
based on fiber channels modeled by the Transformer and the
SSFM. In contrast, the SNR difference between the Bi-LSTM
and the SSFM is more obvious.

The above results indicate that the Transformer has strong
adaptability to different OFDM signals (with different sub-
carrier numbers and different PAPR values) and outperforms
the Bi-LSTM in accuracy.

C. Transmission Rate

Next, the Transformer-based modeling is investigated under
different transmission rates. Besides 30 GBd, we add the rates of
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Fig. 6. SNRs of optical OFDM signals transmitted by different fiber channel
models for 400 km, 800 km, 1200 km, and 1600 km, with ASE noise. The fiber
channel models are the Transformer-based (blue, left), the SSFM-based (red,
middle), and the Bi-LSTM-based (orange, right). .

Fig. 7. EVMs at different transmission distances for transmission rates of 30
GBd (blue, circles), 160 GBd (red, triangles), and 500 GBd (black, diamonds),
with ASE noise.

160 GBd and 500 GBd. Under the three rates, we build different
datasets and train the corresponding Transformer models. With
ASE noise, the performance of Transformer models under dif-
ferent rates is shown in Fig. 7, and EVM is still used to measure
the accuracy of the Transformer. From the EVMs in Fig. 7, the
Transformer model under 30 GBd performs the best, 500 GBd
followed and 160 GBd worst.

The modeling performance deteriorates significantly from
30 GBd to 160 GBd, and the EVM increases from 3.93%
to 8.84% when transmitting 1600 km. This is caused by the
stronger CD effect due to the higher transmission rate. Although
linear-nonlinear decoupling is employed in the preprocessing of
the training dataset, one-step lumped CD compensation cannot
eliminate all linear effects. Some linear effects still exist on
the dataset. These legacy linear effects manifest as temporal
correlations among adjacent samples, making the learning more
difficult for the NN model.

However, from 160 GBd to 500 GBd, there is a noticeable
improvement in the modeling accuracy. When transmitting 1600
km, the EVM drops from 8.84% to 5.54%. It seems to be the
opposite of the results from 30 GBd to 160 GBd. Actually, this is

also related to the CD effect. The existence of CD will cause the
phase mismatch of the OFDM signal and reduce the efficiency of
the third-order nonlinear interaction [37], thereby reducing the
damage caused by FWM to a certain extent. For optical OFDM
systems with low transmission rates, the phase mismatch is light
due to the closely arranged sub-carriers, and the influence on
nonlinear effects is negligible [44]. However, for high rates, CD
results in numerous phase mismatches among well-separated
sub-carriers, leading to considerable FWM mutual interference
effects [45] and significant inhibition of nonlinearity [37]. This
simplifies the nonlinear relationship between the input and out-
put datasets and is beneficial for the NN model to learn.

The low EVMs of channel output ranging from 30 GBd
and 500 GBd indicate that the Transformer-based fiber channel
modeling approach is reliable over a wide range of transmission
bandwidths. The modeling accuracy does not decrease monoton-
ically with the increase in transmission rate. Different rate stages
have different trends. The modeling accuracy decreases with the
increasing rate in the low-rate stage and shows the opposite trend
in the high-rate stage. It means that in optical OFDM systems,
the ML algorithm-based fiber channel modeling is likely not
limited by the high transmission rate.

D. Complexity

To compare the complexity of the Transformer-based model,
Bi-LSTM-based model, and SSFM-based model, the two dimen-
sions of multiplication number and running time are considered.
For the OFDM signal used as the testing dataset, the parameters
are set as follows: the number of subcarriers is 256, the length
of one OFDM symbol is 320 after adding the cyclic prefix, the
total number of OFDM symbols is 200, and the length of PN is
128. It can be calculated that the data length of the total testing
dataset is 513024.

Firstly, the number of multiplications required in the modeling
process is theoretically deduced, which generally reflects the
hardware complexity of the algorithm [46]. The calculation
amount of SSFM mainly derives from FFT and IFFT, and each
iterative step contains one FFT and one IFFT [47]. The total
multiplication number of SSFM can be expressed as

CSSFM = Nspan
L

dz
(4N log2N + 2N) , (14)

where N is the number of samples of the transmitted signal,
Nspan is the number of spans, L is the length of each span, and
dz is the step length of the SSFM.

For ML algorithms, ignoring the activation function, the
calculation amount mainly comes from matrix multiplication.
In the Bi-LSTM model, the LSTM cell is the main component,
which consists of cell state and gates [48]. The cell state contains
all the useful information. Firstly, the forget gate is used to throw
away some old content from the cell state, which is given by

fn = σ(Wf · [hn−1, xn] + bf ), (15)

where hn-1�R1×d_hidden is the output of the previous LSTM
cell, xn�R1×d_in is the input of the current LSTM cell, Wf

�R(d_hidden+d_in)×d_hidden and bf are the cell weights and biases
of the forget gate, and σ represents the sigmoid function. And
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d_in is the input dimension of each LSTM cell, d_hidden is
the hidden layer dimension. Next, LSTM decides to add new
information to the cell state. The equations of the input gate and
new candidate values of the cell state are described by

in = σ(Wi · [hn−1, xn] + bi), (16)

C̃n = tanh(Wc · [hn−1, xn + bc]), (17)

where Wi�R(d_hidden+d_in)×d_hidden and bi are the cell weights
and biases of the input gate. Wc �R(d_hidden+d_in)×d_hidden and
bc are the weights and biases of the candidate cell state, and the
nonlinear activation function is a hyperbolic tangent function.
Then the old cell state can be updated by

Cn = fn × Cn−1 + in × C̃n. (18)

With the updated cell state, the output can be obtained by

on = σ(Wo[hn−1, xn] + bo), (19)

hn = on × tanh(Cn), (20)

where on represents the output gate to decide the output parts
of the cell state. Wo�R(d_hidden+d_in)×d_hidden and bo are the cell
weights and biases of the output gate. hn�R1×d_hidden is the final
output of the current LSTM cell.

For each LSTM cell, (15), (16), (17), and (19) provide the
same number of multiplications (d_hidden+d_in)×d_hidden.
(18) and (20) provide multiplications of 2d_hidden and d_hidden
respectively. Notice that a Bi-LSTM model contains two LSTM
models. The number of multiplications provided by the final
Linear layer is 2d_hidden×d_out, and d_out is the final output
dimension. The total multiplication number of the Bi-LSTM can
be expressed as

CBi−LSTM

= Nspan
2N

dout

[
2Nlayerdn

(
4dindhidden + 4d2hidden

+3dhidden) + 2dhiddendout] , (21)

where Nlayer is the number of hidden layers, dn is the number of
cells in one LSTM layer. The parameter settings of the Bi-LSTM
are shown in Table III.

For the Transformer model, the number of multiplica-
tions provided by the two Linear layers is d_in×d_model
and d_model×d_out, respectively. The multi-head layer pro-
vides 2d_model2 multiplications, and the FFN layer provides
2d_model×dff multiplications. The total multiplication number
of the Transformer can be expressed as

CTransformer

= Nspan
2N

dout

[
dindmodel +Nlayer

(
2d2model

+2dmodeldff ) + dmodeldout] , (22)

where Nlayer is the number of the Transformer layers. The pa-
rameter settings of the Transformer model are shown in Table II.

The relationship between the number of multiplications and
the transmission distance in the modeling process is shown in

Fig. 8. Number of multiplications vs. distance for different fiber channel
models. Transformer based (blue, circles), Bi-LSTM based (red, triangles) and
SSFM based (black, diamonds).

Fig. 9. Running time vs. distance for different fiber channel models. Trans-
former (dz = 0.01 km) based ((blue, circles), Bi-LSTM (dz = 0.01 km) based
(red, triangles), SSFM (dz = 0.1 km) based (cyan, pentagrams) and SSFM (dz
= 0.01 km) based (black, diamonds).

Fig. 8. The number of multiplications increases linearly with the
transmission distance. When transmitting 1600 km, the multi-
plication number is about 3.032·1012 for SSFM, 1.576·1012 for
Bi-LSTM, and 8.701·1011 for Transformer. The multiplication
number of the Transformer is about 55% of Bi-LSTM and
30% of SSFM. With a small number of multiplications, the
Transformer has obvious advantages in hardware complexity.

The complexity of the three models is also compared from the
perspective of running time. The running times on the central
processing unit (CPU) are recorded under the same simulation
conditions (including hardware conditions and software condi-
tions) when transmitting different distances, as shown in Fig. 9.
To avoid contingency, the recorded data is the result averaged
from multiple simulations, which has certain statistical signifi-
cance. Moreover, the setting of the OFDM signal is unchanged.

The ML algorithms can implement parallel computing in the
modeling process, so it is far superior to the SSFM in terms of
time complexity. As shown in Fig. 9, the running time increases
linearly with the transmission distance. When transmitting 1600
km, the required running time is 12502 s for the SSFM (dz is 0.01
km), 163 s for the Bi-LSTM, and only 98 s for the Transformer,
which is about 60% of Bi-LSTM and 0.8% of SSFM. Even
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if the step length dz of the SSFM is increased from 0.01 km
to 0.1 km, the running time for transmitting 1600 km is 1284
s, which is about 13 times the Transformer. The above results
show the superiority of the Transformer-based modeling method
in complexity.

IV. CONCLUSION

This study firstly proposes a Transformer-based fiber channel
modeling method for long-haul optical OFDM transmission and
achieves high accuracy and low time-consuming simulation. We
simplify the Transformer architecture to reduce complexity, i.e.,
discard the Decoder part and cancel the self-attention mecha-
nism. By combining the FDD scheme, adopting the multi-dataset
training method, and redesigning the loss function, the accuracy
and generalization ability of the model are improved. Based on
the measurements of FWM power, EVM and SNR, we have
demonstrated that the Transformer-based fiber channel model
has an excellent performance in terms of nonlinear fitting, accu-
racy, and generalization power. In the transmission of 1600 km,
the average relative error of FWM power is less than 1.3%, the
EVM is below 4%, and the SNR is within 1 dB. Results show that
the model accurately simulates fiber channel effects and is highly
adaptable to different OFDM signals. In addition, the modeling
is investigated at transmission rates of 30 GBd, 160 GBd and
500 GBd, and proved reliable in wide transmission bandwidth.
The multiplication number of the Transformer is about 30% of
SSFM, and the running time is less than 1% of SSFM, making
a significant breakthrough in complexity while ensuring high
accuracy.

The proposed Transformer-based scheme achieves accurate
and fast modeling of the fiber channel in optical OFDM sys-
tems. This approach can be applied to the simulation of optical
OFDM signal transmission and is also beneficial to end-to-end
optimization and system design. In addition, it is expected to be
extended to other optical systems for modeling work.
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