
Reservoir computing system with double
optoelectronic feedback loops
YAPING CHEN, LILIN YI,* JUNXIANG KE, ZHAO YANG, YUNPENG
YANG, LUYAO HUANG, QUNBI ZHUGE, AND WEISHENG HU

State Key Lab of Advanced Communication Systems and Network, Shanghai Institute for Advanced
Communication and Data Science, Shanghai Jiao Tong University, Shanghai, 200240, China
*lilinyi@sjtu.edu.cn

Abstract: Reservoir computing (RC) by supervised training, a bio-inspired paradigm, is gaining
popularity for processing time-dependent data. Compared to conventional recurrent neural
networks, RC is facilely implemented by available hardware and overcomes some obstacles in
training period, such as slow convergence and local optimum. In this paper, we propose and
characterize a novel reservoir computing system based on a semiconductor laser with double
optoelectronic feedback loops. This system shows obvious improvement on prediction, speech
recognition and nonlinear channel equalization compared to the traditional reservoir computing
systems with single feedback loop. Then some influencing factors to optimize the performance
of the new RC are numerically studied, and its great potential of addressing more complex and
troubling problems in information processing is expected to be exploited.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

In today’s internet era, the surge of informatization is sweeping around the world, in the
sense that enormous amounts of heterogeneous data are subsequently accumulating explosively.
Consequently, artificial neuron network (ANN) has been penetrating into every corner of social
life unprecedentedly [1]. Generally speaking, recurrent neural network (RNN) has attracted great
attentions as one of ANNs, and been widely implemented in varieties of complex tasks [2–5]. It
must be noted that, however, RNN reserves some intrinsic drawbacks of local optimum, slow
convergence, difficulties to learn long-range temporal dependencies due to vanishing or exploding
gradient estimates, and etc.
Afterwards, a random recurrent network untrained in connection weights and processed by

a simple classification/regression technique was first proposed by Jaeger as the Echo State
Network (ESN) [6] and by Maass as the Liquid State Machine (LSM) [7]. In 2007, David
Verstraeten et al. [8] proved that ESN and LSM are essentially identical and they named it
as Reservoir Computing (RC). RC has many conspicuous advantages by the virtue of unique
structure. It is unnecessary for RC to train in connection weights. Only you need a simple
classification or regression technique for RC. And it is suitable for different kinds of tasks
and apt to implementation hardware. RC as a new class of RNNs for processing information
has accomplished a very large range of tasks, such as time series prediction, radar signal
prediction, speech recognition, nonlinear channel equalization, handwritten numeral recognition
and optical header recognition [9–14]. RC could be classified into electronic RC and photonic RC.
Electronic RC proposed in [15] performs efficient information processing. Kristof Vandoorne
et al. [16] first proposed photonic RC for optical signal processing in the context of large-scale
pattern recognition problems. Subsequently, hardware implementations of photonic RC with
error rates comparable to the state-of-the-art digital algorithms have been made as another
breakthrough in optical information processing [17,18]. Optoelectronic RC and all-optical RC
have been developing rapidly in different structures such as optoelectronic systems based on
Ikeda model [17, 19–21] and all-optical systems based on saturation of a semiconductor optical
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amplifier as a nonlinear element [18], saturable absorption of a semiconductor mirror [22],
InGaAsP micro-ring-resonators [23], a semiconductor ring laser of light in two directional modes
with the same wavelength [24] and a semiconductor laser (SL) with double optical feedback and
optical injection [25].

Despite there are intensive studies on RC as a nonlinear dynamical system with single nonlinear
node and a delay line, the potential of RC has not yet been fully developed. In what follows
we explore its potential from another perspective. For the first time, we propose a new RC
structure with dual nonlinear nodes and double optoelectronic feedback loops. We study the
performance of the new RC structure on three tasks that are widely considered in the reservoir
computing community, namely the nonlinear autoregressive moving average (NARMA10) task,
isolated spoken digits recognition and nonlinear channel equalization. The novel RC shows better
performance than the previous ones with single nonlinear node and feedback loop. In addition,
we study the influences of some typical parameters: feedback strength, length of feedback loop,
and offset phase. Finally, we discuss the implications of our work for the future development of
photonic reservoir computing.

2. Theory and system model

Traditional RC generally consists of three layers: an input layer, a reservoir and an output layer
as depicted in Fig. 1(a). The input layer feeds the discrete input signals to the reservoir via
fixed random weight connections called the input mask. The reservoir is composed of a certain
quantity of nonlinear nodes randomly interconnected forming feedback loops. Once the input
signals pre-processed by a mask signal come in, the reservoir produces internal variables called
reservoir states. The input mask enriches the dynamics of the reservoir by breaking the symmetry
that would occur if the same part of the input signals would be distributed to all the internal
variables. Then the output layer linearly combines the reservoir states to produce the actual
outputs. The desired output written into the output layer during training stage is often called
teacher forcing signal. At last, training RC is just a simple linear regression task, and numerous
batches or adaptive online algorithms are available. Photonic RC is also composed of three
layers as shown in Fig. 1(b). Although it is simplified as a nonlinear node and feedback loop, its
performances are comparable to the traditional one. And the principle is basically the same as
the traditional RC.

Fig. 1. (a) Schematic diagrams of traditional RC scheme. (b) Schematic diagrams of
photonic RC scheme.

It is theoretically proved that the three-layer neural network with a hidden layer can remarkably
approximate arbitrary continuous function infinitely [26,27]. Nevertheless, this kind of flat neural
network with hundreds of nonlinear nodes in the hidden layer can hardly obtain satisfactory
precision in tackling larger and more complex tasks in practice. Fortunately, a network with more
hidden layers is of great value to approximate complex functions with much higher precision.
And the more complex nonlinear nodes the RC has, the more conducive it is. The structure
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with appropriate complexity takes data into the higher dimensions to process and the interaction
between two feedback loops helps the system to deal with input signals. From the viewpoint of
NN, in space, the single feedback-loop RC can be considered as a hidden layer. We introduce
another nonlinear node and feedback-loop as a new hidden layer as shown in Fig. 2. So the novel
RC we propose can be regarded as a NN with two hidden layers.
In this section, we analyze the theoretical model of the proposed RC with dual nonlinear

nodes and double feedback loops. As illustrated in Fig. 2(a), the system framework includes a
popular optoelectronic delay dynamic Ikeda model. We transform the structure diagram into the
schematic diagram as described in Fig. 2(b). In both figures, the red lines represent the optical
signal transmission, and the blue ones represent the electrical signal transmission. Figure 2(b)
shows the reservoir states by some balls (green balls represent the state in the short feedback loop,
red ones in the difference between two feedback loops) based on Fig. 2(a). In Fig. 2(b), another
nonlinear node and delayed feedback loop are added and the structure serves as an optoelectronic
oscillator with two optoelectronic delayed feedback loops, i.e. short feedback loop(τ1) and long
feedback loop(τ2). ∆τ is the difference between the two feedback loops i.e. ∆τ = τ2 − τ1. Two
off-the-shelf voltages driven Mach-Zehnder Modulators (MZMs) are adopted to provide cos2

nonlinearity, placed at the output of a SL. The process of the input signal multiplied by the
mask signal in the input layer is described in Fig. 2(c). The input signal u(t) is sampled and
each sample operates for a time interval of length T . Even if the input signal is time-discrete,
similar operations should also be carried on. Before being injected into the SL, the piecewise
input signal u(t), u(t) = u(n), nT ≤ t < (n + 1)T , is multiplied by an input mask signal m(t) for
preprocessing which is periodic with a period of T , i.e. m(t + T) = m(t). The mask signal plays
a significant role in defining the input connectivity weights and keeping the nonlinear nodes
in the transient regime to obtain diverse transient responses to a data input. The period T is
divided into N segments called virtual nodes, and each of duration θ: θ = T/N , is the time span
between two reservoir states x(n) or two virtual nodes in the feedback loops. Proved in [17],
when T = Nτ1/(N + k) where 1 ≤ k < N , we are in the unsynchronized regime where the
reservoir states correspond to several dependent reservoirs with a fraction of neurons. In this
regime, reservoir has rich dynamics. Therefore, we take k = 1, i.e. τ1 = θ + T in our work to
get as rich dynamics as possible. Then x(n − 1) is adjacent to an internal variable of x(n). Bias
is added to the mask signal for different tasks to change the variability of the individual node’s
dynamics. In the reservoir, reservoir states are collected in from the short feedback loop. And
several virtual nodes are kept for a while in the long feedback loop which can be adjusted to
optimize the RC. In the output layer, the actual output is obtained by taking a linear combination
of reservoir states xi(n): y(n) =

∑N−1
i=0 Wout xi(n), where the readout weights Wout are trained

by a ridge regression algorithm in the training phase and fixed in the test phase. The ridge
regularization parameter is used to make the RC more robust against overfitting. According to
the above theories and the model in [13, 14], the nonlinear dynamics of optoelectronic feedback
system with two optoelectronic feedback loops can be modeled by the following equation:

τ
dx(t)

dt
+ x(t) +

1
σ

∫ t

t0

x(ε) dε = βcos2[αpx(t − τ2) + φ2]

∗cos2[(1 − p)x(t − τ1) + φ1 + s(t)]
(1)

where x(t) = πV(t)/2Vπ is the normalized bias voltage of MZM, V(t) stands for the amplifier’s
output voltage, and Vπ represents the half-wave voltage of the MZM. σ = 1/(2π fL) and
τ = 1/(2π fH ) respectively represent the characteristic time scale of low-frequency cutoff and
high-frequency cutoff, and fL and fH stand for cutoff frequencies of the low-frequency and
high-frequency for the model, respectively. β denotes the feedback strength. α is the scaling
factor to keep the power of variables of the long feedback loop. p stands for the distribution ratio
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Fig. 2. The novel RC with double optoelectronic feedback loops. (a) Structure of the novel
RC based on a SL with double feedback loops. SL, semiconductor laser; MZM, Mach-
Zehnder modulator; OC, optical coupler; PD, photoelectric detector; OSC, oscilloscope;
ODL, optical delay time; VOA, optical attenuator; PA, power amplifier; LPF, low pass filter;
AWG, arbitrary waveform generator; PS, power splitter; EDL, electrical delay line. (b)
Schematic of the novel RC based on a SL with two feedback loops. NL denotes the nonlinear
transformation for the system. h(t) stands for the system’s impulse response. (c) The process
of input signal multiplied by mask signal in the input layer.

of the coupler. φ1 and φ2 are the offset phase of two MZMs. τ1 and τ2 respectively stand for the
short feedback time delay and the long feedback time delay. In addition, s(t) stands for the input
signal. In the numerical simulation, the parameters are selected as follows: τ = 19.89 ps, σ =
51.34 ps, Vπ = 5 V. We introduce y =

∫ t

t0
x(ε) dε so that the system can be described by


dx(t)
dt = −x/τ − y/(τσ) + βcos2[αpx(t − τ2 + φ2]

∗cos2[(1 − p)x(t − τ1) + φ1 + s(t)]/τ

dy
dt = x

(2)

We solve this system of ordinary differential equations by the fourth-order Runge-Kutta method,
which is widely used in engineering as a high-precision one-step algorithm.

3. Results and discussion

With the above analysis about the proposed RC, we can now give a complete description of
training RC for the following tasks. Three tasks are tested: NARMA10 task, Isolated spoken
digits recognition, and Channel equalization. In this work, the interval of the virtual nodes is
set to θ = 50 ps. The number of virtual nodes N changes with different tasks. We measure
τ1 by the number of virtual nodes, i.e. T = Nθ and τ1 = θ + T . And τ2 can be deduced by
∆τ = τ2 − τ1. The distribution ratio of the coupler p ranges from 0.1 to 0.4, β ∈ [0.2, 1.4], φ1
and φ2 ∈ [−π/4, π/4] and α ∈ [2, 8]. And the ridge parameter ranges from 10−6 to 10−4.

3.1. NARMA10 task

The NARMA10 task is one of the most popular benchmark tasks in the RC community. In this
task, we train our new reservoir computer to model the system behaving like a nonlinear auto
regressive moving average equation of order 10 driven by white noise. The NARMA10 model is
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widely used to simulate time series. The output y∗(n) is expected to be as similar as possible to
the response y(n) of the NARMA10 model driven by the same white noise u(n). The NARMA10
model is given by the following recursive formula:

y(n + 1) = 0.3y(n) + 0.05y(n)(
9∑
i=0

y(n − i)) + 1.5u(n − 9)u(n) + 0.1 (3)

where u(n) is the random input drawn from a uniform distribution over the interval [0, 0.5],
and y(n) is the output of the system. We use the normalized mean square error(NMSE) as a
performance metric. In this task, the RC is trained over a sequence of 1000 time steps and tested
over a subsequent sequence of 1000 time steps. And we repeat this procedure for 10 times to
avoid contingency. NMSE is described by

N MSE =
∑

n[y
∗(n) − y(n)]2∑

n

{
y∗(n) −

∑
n y∗(n)
n

}2 (4)

We set the number of the virtual nodes to N = 50. And the obtained NMSE is 0.103 ± 0.018.
For comparison as shown in Table 1, the NMSE = 0.168 ± 0.015 was obtained in [17], and the
NMSE = 0.152 ± 0.0138 in [28] with the same number of virtual nodes. This result shows a
great improvement to model NARMA10.

Table 1. Comparison to simulation results for NARMA10 task

Simple Reservoir [28] Optoelectronic RC [17] Novel RC

NMSE 0.152±0.0138 0.168±0.01 0.103±0.018

3.2. Isolated spoken digits recognition task

Speech recognition remains a nontrivial task and we have made many efforts to go in quest of a
better alternative to standard speech recognition methods which have hit a limit. Luckily, RC
has proven its value for this recognition in [17–19,29]. This task is the classification of isolated
audio sequences, each one representing a digit (0-9) recorded ten times by five different female
speakers. The dataset, a subset of the National Institute of Standards and Technology Texas
Instrument-46 Corpus (NIST TI-46 Corpus) [30], has 500 sequences. Every input represents
a spoken digit, preprocessed using the Lyon cochlear ear model [31]. We employ 10 linear
classifiers, each one associated to one digit. The target function is set to 1 if the isolated spoken
digit obtained just corresponds to the desired digit, and -1 otherwise. The results of the classifiers
are averaged in time, and then the actual digit is obtained by applying a winner-takes-all method
that the target function of the highest averaged classifier should be set to 1 and others be set to -1.
The highest averaged classifier corresponds to the correct digit. The performance metric used to
evaluate the digit recognition is the Word Error Rate (WER), i.e. the fraction of digits incorrectly
classified. In addition, the corpus has only 500 sequences, so we divide them into five subsets and
the estimation follows a standard cross-validation procedure to avoid the impact of the specific
division of the available data in some operations such as training and testing. Five subsets are
randomly chosen, four of which are used for training and one for testing. And this process is
repeated 5 times so that each subset is evaluated once for the test stage. In this task, we set the
virtual nodes to N = 200. We obtain the best result of all: WER = 0%, which represents that all
correct words are acquired. It is better than the previous ones. For comparison as summarized
in Table 2, the traditional RC [29] gets WER = 4.3% composed of more than 1200 nodes and
3.8% using the Hopfield coding with a network of 320 neurons. LSTM with121 units and 7791
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weights [32] achieves an error rate of 2%. And the WERs are 0.14% at N = 400 in [15], 0.12%
at N = 308 in [33] and 0.4% at N = 200 in the optoelectronic RC with single feedback loop [17].
So our result exceeds the previous achievements.

Table 2. Comparison to simulation results for isolated spoken digits recognition
Traditional RC [29] LSTM [32] Electronic RC [15] Optoelectronic RC [17] Novel RC

WER 4.3%(N>1200) 2%(N=121) 0.14%(N=400) 0.4%(N=200) 0%(N=200)

3.3. Channel equalization task

This task was introduced in [17], the RC as a channel equalizer is capable of suppressing the
inter-symbol interference (ISI) caused by multi-path fading communication channels. The
wireless communication channel is modeled as a linear system followed by a memoryless
nonlinear system with the second-order and third-order nonlinear distortions. The linear system
is described as:

q(n) = 0.08d(n + 2) − 0.12d(n + 1) + d(n) + 0.18d(n − 1)
−0.1d(n − 2) + 0.091d(n − 3) − 0.05d(n − 4)
+0.04d(n − 5) + 0.03d(n − 6) + 0.01d(n − 7)

(5)

where d(n) is the input data to the channel and it is an independent, identically distributed random
sequence with values from {-3, -1, +1, +3}. q(n) is the output of the linear channel. Then, q(n)
goes through the nonlinear system, yielding

u(n) = q(n) + 0.036q(n)2 − 0.011q(n)3 + v(n) (6)

where the additive noise v(n) is a pseudo-random Gaussian with zero mean and variance adjusted
to get the desired output signal-to-noise ratios (SNR) ranging from 12 to 32 dB. u(n) is the
ultimate output. The symbol error rate (SER), defined as the fraction of misclassified symbols, is
used as a performance metric.

12 16 20 24 28 32

SNR(dB)

10-5

10-4

10-3

10-2

10-1

S
E

R

RC with single feedback loop

RC with double feedback loops

Fig. 3. Simulation results for the nonlinear channel equalization task.
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In this task, we use 50 virtual nodes in the short feedback loop for comparison to previous
results. The datasets include 10 different subsets and each subset contains 9000 samples, one
third of them as a training set and the other as a testing set. And every subsets are reused for 10
times. This task is, given the output u(n) of the channel, to reconstruct the input d(n). The RC
with double feedback loops has shown better performance of equalization than the RC with single
feedback loop [17] as illustrated in Fig. 3. The horizontal axis means signal-to-noise ratio (SNR)
of the nonlinear channel. And the vertical axis means symbol error rate (SER), the fraction of
misclassified symbols. The red circles show the discrete simulation results in [17] for the similar
Optoelectronic RC with single feedback loop. The blue circles represent the simulation results
for the novel RC with double feedback loops. Besides, the error bars represent the deviation of
the SER for the same trials. We can see that the SER drops at each SNR in comparison to [17].
It is noteworthy that the error symbols very close to 0 are obtained at 28 dB SNR and the SER
appears zero in some subsets at 32 dB SNR, which means that all 60,000 symbols are nearly
correct.

3.4. Influence factors

The feedback delay time and the feedback strength play crucial roles in the dynamics of
optoelectronic feedback systems, as is the case for performances of the optoelectronic RC. For
every task, the research methods of influence parameters on the performances of RC are similar.
Therefore, we choose one of the three tasks (the first task) to analyze the influence parameters on
the performance of RC as a reference for optimizing the system. Certainly, the analysis results
can also be seen as a reference for other tasks. Here, we fix some factors: the intervals of nodes θ
= 50 ps, N = 50, p = 0.2 and α = 4.

0 0.5 1 1.5 2 2.5 3 3.5

(ns)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

N
M

S
E

Fig. 4. NMSE dependence on ∆τ from 0.1 ns to 3.4 ns for the first task.

Figure 4 shows how the difference ∆τ between short and long feedback loop affects the
per-formance of RC evaluated by NMSE. It shows a degradation trend with the increase of ∆τ.
And then it is found that the NMSE fluctuates in pace with increasing ∆τ, and the minimum
of NMSE appears at ∆τ = 0.5 ns, 0.7 ns and 1 ns corresponding to the difference between the
number of virtual nodes of the feedback loops: 10, 14 and 20. Subsequently, the NMSE soars
up over 20% after ∆τ = 2.3 ns and then changes slowly in last phase. It is speculated that x(i)
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acted on some variables of x(i − 1) can help the system reduce the NMSE. It indicates that strong
independence between different virtual node states may have a positive influence on modeling
NARMA. But the more variables added have not obvious effect and even subtly adverse impact.
The result becomes worse when adding more previous transient states. So ∆τ should be chosen
appropriately to improve the performance of the new RC. From the viewpoint of application, we
generally select ∆τ = 0.5 ns.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.05
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0.35

N
M

S
E

Fig. 5. NMSE as a function of the feedback strength β in the novel RC for the first task.
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Fig. 6. Color distribution map of NMSE obtained by φ1 and φ2 ranging from -π to π.

We then study the influence of the feedback strength on the performance of the new RC
measured by NMSE. The system parameters are θ = 50 ps, p = 0.2, α = 4, ∆τ = 0.5 ns, φ1 and
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φ2 ∈ [−π/4, π/4]. It can be easily understood through a quantitative analysis in Fig. 5 that the
power is not enough to process input signal when the feedback strength β is too small, so the
NMSE is relatively high. And the NMSE fluctuates gently with the increase of the feedback
strength β in the range of 0.25 to 1.4. But when the feedback strength β exceeds 1.4, the NMSE
increases because chaos states in RC start appearing and dynamics of RC come to be out of order
and extremely sensitive. So a proper feedback strength β should be used in order to keep the RC
in a good state.

Finally, we study the impact of the offset phases φ1 and φ2 together on the NMSE of the novel
RC. We set θ = 50 ps, α = 4, ∆τ = 0.5 ns and β = 0.4. Figure 6 gives a detailed description of the
changes of NMSE of the novel RC. And it is conspicuously observed that the NMSE is relatively
higher when φ1 or φ2 is close to ±π/2 and ±3π/4. And if φ1 and φ2 ∈ [−π/4, π/4], the NMSE
is relatively lower. It is also found that if φ1 = φ2, the NMSE is relatively lower in comparison to
φ1 , φ2 by observing the detailed data.

4. Conclusions and outlook

In this paper, we introduce a new hidden layer and add more nonlinearities into RC forming
a novel RC with double feedback loops. The performances of the optoelectronic reservoir
computing system based on a semiconductor laser with double optoelectronic feedback loops
for NARMA10 task, isolated spoken digits recognition and nonlinear channel equalization are
studied and the obtained performances are compared with the previous results. The novel RC
shows its advantages in prediction, spoken recognition and channel equalization. In addition, we
numerically analyze some influence factors to optimize the performance of the new RC. Feedback
delay time and feedback strength play crucial roles in the dynamics of optoelectronic feedback
systems, as is the case for performances of the optoelectronic RC. And we also study the offset
phases to optimize the parameters of the new RC.

Still, there are a number of challenges for the novel RC: how to realize hardware of the new RC;
how many loops in the new RC are needed for a specific task (here we use two feedback loops for
example). Despite the road to improve RC twists and turns, further study will be implemented
to exploit its great potential to address more complex and troubling problems in information
processing and other efforts will be made to push forward it a new-type computer.

Funding

National Natural Science Foundation of China (NSFC) (61575122).

References
1. C. L. P. Chen and C. Y. Zhang, “Data-intensive applications, challenges, techniques and technologies: A survey on

big data,” Inf. Sci. 275, 314–347 (2014).
2. L. A. Feldkamp, D. V. Prokhorov, C. F. Eagen, and F. Yuan, Enhanced Multi-Stream Kalman Filter Training for

Recurrent Networks (Springer US, 1998), pp. 29–54.
3. A. Graves, A. Mohamed, and G. Hinton, “Speech recognition with deep recurrent neural networks,” in 2013 IEEE

International Conference on Acoustics, Speech and Signal Processing, (2013), pp. 6645–6649.
4. W. Mo, C. L. Gutterman, Y. Li, G. Zussman, and D. C. Kilper, “Deep neural network based dynamic resource

reallocation of bbu pools in 5g c-ran roadm networks,” in Optical Fiber Communication Conference, (Optical Society
of America, 2018).

5. Y. Luo and Y. Huang, “Text steganography with high embedding rate: Using recurrent neural networks to generate
chinese classic poetry,” in Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security,
(ACM, 2017), pp. 99–104.

6. H. Jaeger, “The "echo state" approach to analysing and training recurrent neural networks-with an erratum note,” Ger.
Natl. Res. Cent. Inf. Technol. GMD Tech. Rep. 148, 13 (2001).

7. W. Maass, T. Natschlädger, and H. Markram, “Real-time computing without stable states: A new framework for
neural computation based on perturbations,” Neural Comput. 14, 2531–2560 (2002).

8. D. Verstraeten, B. Schrauwen, M. D’Haene, and D. Stroobandt, “An experimental unification of reservoir computing
methods,” Neural Networks 20, 391–403 (2007).

                                                                                          Vol. 27, No. 20 | 30 Sep 2019 | OPTICS EXPRESS 27439 



9. F. Triefenbach, A. Jalalvand, B. Schrauwen, and J. P. Martens, “Phoneme recognition with large hierarchical
reservoirs,” in Proceedings of the 23rd International Conference on Neural Information Processing Systems, vol. 2
(Curran Associates Inc., 2010), pp. 2307–2315.

10. L. Boccato, A. Lopes, R. Attux, and F. J. Von Zuben, “An echo state network architecture based on volterra filtering
and pca with application to the channel equalization problem,” in The 2011 International Joint Conference on Neural
Networks, (2011), pp. 580–587.

11. H. Jaeger and H. Haas, “Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless
communication,” Science 304, 78–80 (2004).

12. F. Duport, A. Akrout, A. Smerieri, M. Haelterman, and S. Massar, “Analog input layer for optical reservoir computers,”
Eprint Arxiv 146, 460–4 (2014).

13. J. Qin, Q. Zhao, H. Yin, Y. Jin, and C. Liu, “Numerical simulation and experiment on optical packet header recognition
utilizing reservoir computing based on optoelectronic feedback,” IEEE Photonics J. 9, 1–11 (2017).

14. Yu Jin, Q. Zhao, H. Yin, and Hehe Yue, “Handwritten numeral recognition utilizing reservoir computing subject
to optoelectronic feedback,” in 2015 11th International Conference on Natural Computation (ICNC), (2015), pp.
1165–1169.

15. L. Appeltant, M. C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C. R. Mirasso, and
I. Fischer, “Information processing using a single dynamical node as complex system,” Nat. Commun. 2, 468 (2011).

16. K. Vandoorne, W. Dierckx, B. Schrauwen, D. Verstraeten, R. Baets, P. Bienstman, and J. V. Campenhout, “Toward
optical signal processing using photonic reservoir computing,” Opt. Express 16, 11182–11192 (2008).

17. Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman, and S. Massar, “Optoelectronic
reservoir computing,” Sci. Rep. 2, 287 (2012).

18. F. Duport, B. Schneider, A. Smerieri, M. Haelterman, and S. Massar, “All-optical reservoir computing,” Opt. Express
20, 22783–22795 (2012).

19. L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutierrez, L. Pesquera, C. R. Mirasso, and I. Fischer,
“Photonic information processing beyond turing: an optoelectronic implementation of reservoir computing,” Opt.
Express 20, 3241–3249 (2012).

20. R. Martinenghi, A. Baylón-Fuentes, F. Xiaole, M. Jacquot, Y. Chembo, and L. Larger, “Optoelectronic nonlinear
transient computing with multiple delays,” in 2013 Conference on Lasers Electro-Optics Europe International
Quantum Electronics Conference CLEO EUROPE/IQEC, (2013).

21. F. Duport, A. Smerieri, A. Akrout, M. Haelterman, and S. Massar, “Fully analogue photonic reservoir computer,” Sci.
Rep. 6, 22381 (2016).

22. A. Dejonckheere, F. Duport, A. Smerieri, L. Fang, J.-L. Oudar, M. Haelterman, and S. Massar, “All-optical reservoir
computer based on saturation of absorption,” Opt. Express 22, 10868–10881 (2014).

23. C. Mesaritakis, A. Kapsalis, and D. Syvridis, “All-optical reservoir computing system based on ingaasp ring resonators
for high-speed identification and optical routing in optical networks,” Proc. SPIE 9370, 1269–1277 (2015).

24. R. M. Nguimdo, G. Verschaffelt, J. Danckaert, and G. Van der Sande, “Simultaneous computation of two independent
tasks using reservoir computing based on a single photonic nonlinear node with optical feedback,” IEEE Trans.
Neural Networks Learn. Syst. 26, 3301–3307 (2015).

25. Y. Hou, G. Xia, W. Yang, D. Wang, E. Jayaprasath, Z. Jiang, C. Hu, and Z. Wu, “Prediction performance of reservoir
computing system based on a semiconductor laser subject to double optical feedback and optical injection,” Opt.
Express 26, 10211–10219 (2018).

26. G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Math. Control. Signals Syst. 2, 303–314
(1989).

27. K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural
Networks 2, 359–366 (1989).

28. A. Rodan and P. Tiňo, “Simple deterministically constructed recurrent neural networks,” in Intelligent Data
Engineering and Automated Learning, (Springer Berlin Heidelberg, 2010), pp. 267–274.

29. D. Verstraeten, B. Schrauwen, D. Stroobandt, and J. V. Campenhout, “Isolated word recognition with the liquid state
machine: a case study,” Inf. Process. Lett. 95, 521–528 (2005).

30. T. Instruments-Developed, “46-word speaker-dependent isolated word corpus (ti46),” NIST Speech Disc pp. 7–1.1
(1991).

31. R. Lyon, “A computational model of filtering, detection, and compression in the cochlea,” in IEEE International
Conference on Acoustics, Speech, and Signal Processing, vol. 7 (1982), pp. 1282–1285.

32. A. Graves, D. Eck, N. Beringer, and J. Schmidhuber, “Biologically plausible speech recognition with lstm neural
nets,” in Biologically Inspired Approaches to Advanced Information Technology, (Springer Berlin Heidelberg, 2004),
pp. 127–136.

33. D. Verstraeten, B. Schrauwen, and D. Stroobandt, “Reservoir-based techniques for speech recognition,” in The 2006
IEEE International Joint Conference on Neural Network Proceedings, (2006), pp. 1050–1053.

                                                                                          Vol. 27, No. 20 | 30 Sep 2019 | OPTICS EXPRESS 27440 




