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Abstract: The practical application of chaotic optical communications has been limited by 
two aspects: the difficulty in concealing the time delay - a critical security parameter in 
feedback chaotic systems, and the difficulty of significantly enlarging the key space without 
complicating the implementation. Here we propose an architecture to break the above limits. 
By introducing a frequency-dependent group delay module with frequency tuning resolution 
of 1 MHz into the chaotic feedback loop, we demonstrate excellent time delay concealment 
effect, and an additional huge key space of 1048 can be achieved at the same time. The 
effectiveness is proved by both numerical simulation and experiment. Besides, the proposed 
scheme is compatible with the existing commercial optical communication systems, thus pave 
the way for high-speed secure optical communications. 
© 2016 Optical Society of America 

OCIS codes: (060.4510) Optical communications; (060.4785) Optical security and encryption; (140.1540) Chaos. 

References and links 

1. L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Phys. Rev. Lett. 64(8), 821–824 (1990). 
2. K. M. Cuomo and A. V. Oppenheim, “Circuit implementation of synchronized chaos with applications to 

communications,” Phys. Rev. Lett. 71(1), 65–68 (1993).
3. P. Colet and R. Roy, “Digital communication with synchronized chaotic lasers,” Opt. Lett. 19(24), 2056–2058

(1994).
4. G. D. VanWiggeren and R. Roy, “Communications with chaotic lasers,” Science 279(5354), 1198–1200 (1998). 
5. S. Tang and J. M. Liu, “Message encoding-decoding at 2.5 Gbits/s through synchronization of chaotic pulsing

semiconductor lasers,” Opt. Lett. 26(23), 1843–1845 (2001).
6. J. Paul, K. A. Shore, “3.5-GHz signal transmission in an all-optical chaotic communication scheme using 1550-

nm diode laser,” IEEE Photon. Technol. Lett. 17(4), 920–922 (2005).
7. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, and I. Fischer, “Chaos-based communications 

at high bit rates using commercial fiber-optic links,” Nature 438, 343–346 (2005).
8. R. Lavrov, M. Jacquot, and L. Larger, “Nonlocal nonlinear electro-optic phase dynamics demonstrating 10 Gb/s 

chaos communications,” IEEE J. Quantum Electron. 46(10), 1430–1435 (2010).
9. N. Gastaud, S. Poinsot, L. Larger, J.-M. Merolla, M. Hanna, J.-P. Goedgebuer, and F. Malassenet, “Electro-

optical chaos for multi-10 Gbit/s optical transmissions,” Electron. Lett. 40(14), 898–899 (2004).
10. R. Lavrov, M. Peil, M. Jacquot, L. Larger, V. Udaltsov, and J. Dudley, “Electro-optic delay oscillator with 

nonlocal nonlinearity: Optical phase dynamics, chaos, and synchronization,” Phys. Rev. E Stat. Nonlin. Soft 
Matter Phys. 80(2), 026207 (2009).

11. S. Ortin, M. Jacquot, L. Pesquera, M. Peil, and L. Larger, “Time delay extraction in chaotic cryptosystems base 
on optoelectronic feedback with variable delay,” Proc. SPIE 699, 0E. 1–12 (2008).

12. V. S. Udaltsov, L. Larger, J. P. Goedgebuer, A. Locquet, and D. S. Citrin, “Time delay identification in chaotic 
cryptosystems ruled by delay-differential equations,” J. Opt. Technol. 72(5), 373–377 (2005).

13. D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic 
semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–
1891 (2009). 

14. S. Ortin, J. M. Gutie-rezc, L. Pesqueraa, and H. Vasqueza, “Nonlinear dynamics extraction for time-delay 
systems using modular neural networks synchronization and prediction,” Physica A 351, 133–141 (2005). 

15. J. G. Wu, G. Q. Xia, and Z. M. Wu, “Suppression of time delay signatures of chaotic output in a semiconductor 
laser with double optical feedback,” Opt. Express 17(22), 20124–20133 (2009).

                                                                                                 Vol. 24, No. 20 | 3 Oct 2016 | OPTICS EXPRESS 23439 

#270819  
Journal © 2016

http://dx.doi.org/10.1364/OE.24.023439 
Received 5 Aug 2016; revised 15 Sep 2016; accepted 15 Sep 2016; published 29 Sep 2016 



16. Y. Wu, “Can fixed time delay signature be concealed in chaotic semiconductor laser with optical feedback?” 
IEEE J. Quantum Electron. 48(11), 1371–1379 (2012). 

17. W. H. Kye, M. Choi, M. W. Kim, S. Y. Lee, S. Rim, C. M. Kim, and Y. J. Park, “Synchronization of delayed 
systems in the presence of delay time modulation,” Phys. Lett. A 322(5-6), 338–343 (2004). 

18. D. Rontani, A. Locquet, M. Sciamanna, and D. S. Citrin, “Loss of time-delay signature in the chaotic output of a 
semiconductor laser with optical feedback,” Opt. Lett. 32(20), 2960–2962 (2007). 

19. G. Aromataris and V. Annovazzi-Lodi, “Enhancing privacy of chaotic communications by double masking,” 
IEEE J. Quantum Electron. 49(11), 955–959 (2013). 

20. L. Ursini, M. Santagiustina, and V. Annovazzi Lodi, “Enhancing Chaotic Communication Performances by 
Manchester Coding,” IEEE Photonics Technol. Lett. 20(6), 401–403 (2008). 

21. R. M. Nguimdo, P. Colet, and C. Mirasso, “Electro-optic delay devices with double feedback,” IEEE J. Quantum 
Electron. 46(10), 1436–1443 (2010). 

22. J. Hizanidis, S. Deligiannidis, A. Bogris, and D. Syvridis, “Enhancement of chaos encryption potential by 
combining all-optical and electro-optical chaos generators,” IEEE J. Quantum Electron. 46(11), 1642–1649 
(2010). 

23. R. M. Nguimdo, P. Colet, L. Larger, and L. Pesquera, “Digital key for chaos communication performing time 
delay concealment,” Phys. Rev. Lett. 107(3), 034103 (2011). 

24. R. M. Nguimdo and P. Colet, “Electro-optic phase chaos systems with an internal variable and a digital key,” 
Opt. Express 20(23), 25333–25344 (2012). 

25. Z. Wang, “Optical Steganography Over a Public DPSK Channel with Asynchronous Detection,” IEEE J. 
Quantum Electron. 13, 48–50 (2011). 

26. Z. Wang, M. P. Fok, L. Xu, J. Chang, and P. R. Prucnal, “Improving the privacy of optical steganography with 
temporal phase masks,” Opt. Express 18(6), 6079–6088 (2010). 

27. N. Kostinski, K. Kravtsov, and P. R. Prucnal, “Demonstration of an all-optical OCDMA encryption and 
decryption system with variable two-code keying,” IEEE Photon. Technol. Lett. 20(24), 2045–2047 (2008). 

28. S. S. Li, Q. Liu, and S. C. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated 
from a semiconductor laser,” IEEE Photon. J. 4(5), 1930–1935 (2012). 

29. J. R. Kuttler and G. D. Dockery, “Theoretical description of the parabolic approximation/Fourier split-step 
method of representing electromagnetic propagation in the troposphere,” Radio Sci. 26(2), 381–393 (1991). 

1. Introduction 

Chaotic systems have been considered as good candidate for providing information security 
attributed to its broadband, noise like, and unpredictability nature [1,2]. Since the first 
experimental demonstration using chaotic laser for digital communications [3], the chaotic 
dynamics has been extensively exploited for chaos-based secure optical communications [4–
10]. However, the security of chaotic optical systems remains the key issue to be addressed 
[11]. In principle, chaotic systems with feedback loop are able to generate infinite-
dimensional chaotic carrier, and the feedback time delay parameter serves as a critical secure 
key. Unfortunately, it was proved that with several methods such as auto correlation 
functions, mutual information and extrema statistics, the delay time can be successfully 
extracted [12,13]. Then, with the knowledge of the delay time, other hardware parameters can 
be easily estimated. Once the eavesdroppers have figured out all the hardware keys, they can 
use technologies such as artificial neuron networks to reconstruct the chaotic system [14]. 
Therefore, two remaining essential questions need to be addressed to improve the security of 
chaotic optical communication: how to conceal the time delay and how to improve the key 
space. There have been a wide variety of methods to conceal the time delay signature (TDS). 
It has been demonstrated the TDS can be suppressed in a double optical feedback chaotic 
systems [15]. However, the fixed time delay cannot be concealed in optical feedback chaotic 
systems even for multiple feedback cavities using spectrum analysis method [16]. Variable 
time delay by time delay modulation has been proposed to conceal the TDS [17], but it has 
been shown that the period of the time delay can be extracted from experimental data by 
using the mutual information function [11]. Choosing the feedback delay time around the 
relaxation frequency of the laser can also conceal the TDS [18], but at the expense of 
reducing the chaotic complexity. Therefore, a valid TDS concealment method is still required. 
Except for TDS concealment, increasing the chaotic complexity is also a way to improve the 
security level. The security can be improved to a certain extent by using double masking [19], 
Manchester coding [20], combining all-optical and electro-optical feedback schemes [21,22]. 
Undoubtedly, simultaneously concealing the TDS and increasing the security key space is the 
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best way to improve security. By using double electro-optic feedback loops in parallel or 
serial configuration to improve the chaotic complexity and introducing a digital key into the 
feedback loop, the TDS can be greatly suppressed and the key space is extremely increased 
by entropy amplification [23,24], which could be considered with the highest security level in 
the chaos-based optical communication systems ever reported. However, the configuration of 
chaotic emitter and receiver is quite complicated, which will increase the implementation 
difficulty and only simulations have been performed. Besides, the distribution and 
synchronization of the digital key remains an issue for chaotic optical communications. 

In this article, we propose a new scheme that significantly increases the security level of 
chaotic optical communication without complicating the implementation. The key idea is to 
introduce a frequency-dependent group delay (FDGD) module with high frequency tuning 
resolution into the chaotic feedback loop, which acts as a hardware key to significantly 
conceal the TDS and increase the security key space. The eavesdroppers must generate 
exactly the same FDGD curve to cancel the chaotic carrier for signal decryption. Fiber Bragg 
grating (FBG) can be regarded as a kind of FDGD module, and it has been applied to optical 
security fields before, such as in steganography communication systems [25,26], optical code 
division multiple access (OCDMA) systems [27] and chaotic optical communications [28]. 
However, the group delay curve is not easy to be flexibly tuned with high resolution in FBG 
therefore the key space is very limited. In our approach, we use a FDGD module consisting of 
cascaded Gires-Tournois (G-T) etalons to generate arbitrary group delay curve with high 
frequency resolution. The security key space can be adjusted according to the security 
demand in different application scenarios by changing the structure of the FDGD module. We 
demonstrate a 1048 secure key space enlargement with a FDGD module consisting of 16 
cascaded G-T etalons as an example. Another striking advantage of this structure is the 
significant time delay concealment effect. Instead of performing the time delay concealment 
in time domain as the methods suggested in most of the previous research 
[14,16,18,25,26,28], this concealment is skillfully achieved in frequency domain. Because of 
the present of the FDGD module, different frequency components of the chaotic laser 
experience different delay time, therefore the time periodicity is broken and the TDS vanishes 
from both time-domain auto-correlation function and frequency-domain spectrum analysis 
methods, which have been verified by both numerical simulation and experimental 
demonstration. Besides, the FDGD module can be manufactured with mass production 
capability and the match of FDGD modules in emitter and receiver is feasible by using the 
same structure and the same setting of the G-T etalons after calibration. These contributions 
together enable the proposed scheme to pave the way for high-speed secure optical 
communications. 

2. Principles and results 

2.1 System architecture 

The architecture of the proposed setup is depicted in Fig. 1, where the electro-optical 
feedback configuration is adopted due to its implementation feasibility and potential to 
support high bit rate [9]. The basic part of the emitter side is an electro-optical feedback delay 
loop, where the chaotic carrier is generated from the non-linearity of a high-speed lithium 
niobate Mach-Zehnder modulator (MZM) with a small half-wave voltage, which is seeded by 
a continuous-wave (CW) semiconductor laser diode (LD1). The message m(t) is carried by 
the output of LD2 and mixed with the chaotic carrier through an optical coupler (OC). The 
coupler splits the mixed signal into two arms, one beam is send to the receiver after fiber 
transmission while the other is injected into the feedback loop. Note that the message 
participates in the chaotic generation process by perturbing the original chaotic dynamics, 
thus further increases the chaotic complexity. The feedback signal is first subjected to a 
certain time delay, then sent into the key component in our system, a FDGD module, which is 
manufactured by a series of cascaded G-T etalons. Optical beam is subjected to zero-loss 
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transmission in the cavity of G-T etalons, but experienced different group delay for different 
frequency components, thus the FDGD could be considered as a frequency-dependent group 
delay component. More details about FDGD and G-T etalons will be presented later. A 
broadband photo-detector (PD) converts the output signal from the FDGD module into 
electrical waveform as the electrical input of the MZM after being boosted by a broadband 
radio frequency (RF) driver. Once the output voltage of the RF driver is two to three times of 
Vπ , the chaotic carrier can be generated. In the receiver side, the open loop synchronization 

configuration is adopted due to its simplicity [7]. If all the parameters including the delay 
time, the frequency responses of MZM, RF driver and PD and the group delay curve of the 
FDGD module are matched, the chaotic carrier can be synchronized and the message can be 
recovered. 

 

Fig. 1. System architecture. 

G-T etalon is a kind of optical interferometer made by two parallel reflective mirrors, 
where the back one is perfectly reflective and the front one is partially reflective. Figure 2(a) 
depicts the schematic architecture of FDGD consisting of 16 cascaded G-T etalons. It should 
be noted that more G-T etalons can produce broad group delay curves, and will result in 
higher cracking difficulty for illegal users, as well as larger encryption difficulty for legal 
users, so the number should be properly designed. The FDGD curve of G-T etalons can be 
controlled by several parameters such as cavity length, reflectivity and reflective index. Here 
we use etalons with variable cavity lengths, which can be accurately controlled by precise 
temperature control with a tuning resolution of 0.001°C, as the case of a commercial tunable 
dispersion compensator also consisting of cascaded G-T etalons from II-VI photonics. 

The frequency response of a single G-T etalon can be expressed as: 
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where r is the reflective coefficient of the partially reflecting mirror and δ donates the phase 
shift of the optical beam in one round-trip of the cavity, which is defined by: 
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In this equation, n and d are the refractive index and thickness of the cavity medium, 
respectively, while λ and θ represent the wavelength and the incidence angle of the incoming 
light. Use i to distinguish each etalon contained in FDGD, and the frequency response of the 
ith etalon can be further expressed in exponential form as: 
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′ ′= = −   (3) 

Combine Eq. (3) with Eq. (1),the phase spectrum and group delay spectrum of the ith 
etalon can be deduced as: 
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Fig. 2. (a) Schematic architecture of the FDGD module, (b) the group delay spectra of three 
individual G-T etalons and (c) the superposed group delay spectra of 16 cascaded G-T etalons. 

The frequency response of FDGD is the superposition of the frequency response of 16 
cascaded G-T etalons, and can be described as: 
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Similarly, the phase and group delay spectra of FDGD are expressed as follows: 

 
1

( ) ( ),
i N

i
i

ϕ ω ϕ ω
=

=

=  (7) 

 
1

( ) ( ),
i N

i
i

τ ω τ ω
=

=

=  (8) 

In above equations, H(ω) is the frequency response of each etalon, φ(ω) and τ(ω) 
respectively represent the phase spectrum and group delay spectrum of the module. 

Figure 2(b) shows the group delay spectra of three uniform individual G-T etalons 
distinguished by color. The three G-T etalons have different temperature settings, which 
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result in different cavity length and further produce different group delay curves according to 
Eq. (5). Figure 2(c) represents the superposed group delay spectra of 16 cascaded etalons, 
where different colors correspond to different temperature setting combinations of 16 G-T 
etalons. 

2.2 Chaotic dynamics 

The dynamics model of the overall chaotic system can be expressed as follows. The complex 
envelope of the electrical field at the MZM output can be expressed as: 
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where Vπ and DCV  represent the RF half-wave voltage and the bias half-wave voltage, 

( )V t and BV  represent RF input and DC bias. To boost the nonlinearity of the modulator, 

MZM with low Vπ  and RF driver with high output voltage are used. Let ( )E t′  be the 

electrical field output of the FDGD module, which obeys the following function: 

 [ ]{ }1 ( )( ) ( - ) ( ) ,i
mE t F F E t T m t T e ϕ ωα−′ = + −  (10) 

where T  donates the overall cavity delay time including both the frequency-independent time 
delay from all optical/electrical components in the feedback loop and the frequency-
dependent time delay from the FDGD module as described in Eq. (8). ( )m t represents the 

message added into the chaotic carrier and mα represents the amplitude ratio between the 

message and the chaotic carrier, ( )ϕ ω is the phase spectrum of the FDGD. F and F−1 

represent Fourier transform and its reverse transform, respectively. 
Using subscripts “1”, “2” to distinguish the emitter and the receiver, a generalized 

dynamical model of the proposed chaotic transmitter can be described as: 
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where G and S represent the gain of the electrical driver and the sensitivity of the photo 
detector, respectively. Note that the electrical response of the feedback loop is equivalent to a 
first-order band-pass filter, where τ and θ  corresponding to high cut-off frequency and low 
cut-off frequency of the equivalent band-pass filter, respectively. All the variables are 
expressed in the normalized form. The dynamic model of the chaotic receiver can be 
described as: 
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For perfect chaotic synchronization, all the hardware parameters of each component, 
including MZM, optical delay line, FDGD, PD, and RF driver, should be matched. 

First, to prove the chaotic capability of the proposed architecture, we tested the generated 
chaotic dynamics under different conditions, and the results are plotted in Fig. 3. A digital 
real-time oscilloscope was used to record traces up to 2,000,000 points, under 40 GS/s 
sampling rate. The sample time is 50 μs, covering over 200 times of the feedback delay time, 
thus is sufficiently enough for time delay identification. An electrical spectrum analyzer 
(ESA, Anritsu MS266C7) is used for spectrum analysis. In each figure, we use black line to 
illustrate the situation without cavity feedback, which is achieved by disconnecting the 
feedback loop. Fig. 3(a)-3(d) are chaotic intensity time series, and the corresponding radio-
frequency (RF) spectrums and optical spectrums are respectively presented in Fig. 3(e)-3(h) 
and Fig. 3(i)-3(l). In Fig. 3(a), the FDGD is replaced by a fiber jumper which has the same 
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length with the FDGD pigtail, while in Fig. 3(b) and Fig. 3(c), the FDGD group delay curves 
are set to be linear within the chaotic spectrum, and the dispersion values are 2000ps/nm and 
1000ps/nm, respectively. In Fig. 3(d), the FDGD has an irregular group delay curve. For clear 
display, only 1000 points were plotted in each time-domain trace, although the sample length 
is 2,000,000. From the RF spectra in the middle column of Fig. 3, the bandwidth of the 
generated chaotic spectrum is around 5 GHz, matching with the bandwidth of the electrical 
driver, which is the component with the narrowest band in the experiment. It could be 
observed that the spectrum of non-chaotic signal (black lines) is increased at around 4.5 GHz. 
We make a reasonable judgment that this is caused by the intrinsic property of the ESA, since 
the spectrum has the same shape with the noise floor. The spectrum amplitude suffers a slight 
reduction in Fig. 3(f)-3(h) compared to that in Fig. 3(a), due to the FDGD module’s insertion 
loss. The optical spectra in the right column of Fig. 3 prove the broadband characteristic of 
the chaotic signal again. Another significant conclusion is that introducing the FDGD will not 
break the chaotic status of the original system, which is the basis for our following 
investigations. 

 

Fig. 3. Chaotic time series (a) (b) (c) (d), corresponding RF spectrums (e) (f) (g) (h) and optical 
spectrums (i) (j) (k) (l). Black lines in each figures represent the situation without feedback. (a) 
(e) (i) represents chaotic system without FDGD. (b) (f) (j) represent chaotic system with 
FDGD where the group delay curve is linear within the chaotic spectrum with a 2000ps/nm 
dispersion. (c) (g) (k) represents chaotic system with FDGD where the group delay curve is 
linear within the chaotic spectrum with a 1000ps/nm dispersion. (d) (h) (l) represents chaotic 
system with FDGD where the group delay curve is irregular within the chaotic spectrum. 

2.3. Time delay signature concealment 

We performed both simulation and experiment to evaluate the TDS concealment capability of 
the FDGD module in the feedback loop. The experimental setup is the same as the emitter in 
Fig. 1. Traditional numerical approach for nonlinear chaotic system is Forth-order Runge-
Kutta integration, which calculates the chaotic dynamics by time domain iteration, but the 
FDGD module is a frequency-dependent component, thus can only be modeled in frequency 
domain. Therefore, we take another method, the Split-Step Fourier Transformation, which is 
extensively used for dispersive media and non-linear dynamics [29]. 1,000,000 points were 
calculated in each trace, with a step size of 50 and a window width of 2,000. 
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Fig. 4. Evidence of TDS concealment. To ensure reliable time delay concealment capability, 
we tested two different group delay curves in parabolic and linear shape, which are plotted in 
(a) (b), the corresponding TDS concealment ability is demonstrated in time domain (c) (d) (e) 
(f) and frequency domain (g) (h), both from numerical calculation (c) (d) and experimental 
demonstration (e) (f) (g) (h). Contrast between the situations with (black line) and without (red 
line) FDGD are distinguished by different colors in each figure. 

To ensure reliable time delay concealment capability, we tested two different group delay 
curves in parabolic and linear shape, which are plotted in Fig. 4(a) and 4(b). The simulation 
results are shown in Fig. 4(c) and 4(d), while the experimental results are shown in Fig. 4(e)-
4(h). In each plot, black and red lines represent the situation with and without FDGD, 
respectively. For the case without FDGD, the group delay is same for all the frequency 
components, while for the case with FDGD, we set linear and parabolic group delay curves 
within the chaotic spectral bandwidth as representative to verify the TDS capability of the 
FDGD module. Firstly, we adopt the time-series analysis method, the well-known auto-
correlation function (ACF) trace to evaluate the TDS concealment performance. Without 
FDGD, there is a clear peak shown on the ACF trace, which is around 247 ns, exactly 
corresponding to the overall cavity time delay. For the case of FDGD with both linear and 
parabolic group delay curves, the peak is suppressed to an invisible value, proving the TDS 
concealment capability of the FDGD module. The agreement between simulation and 
experimental results proves the theoretical validity and robustness of the numerical model. 
Then we evaluate the TDS concealment using spectrum analysis method [16] and the 
experimental results are shown in Fig. 4(g) and 4(h). Without FDGD, the frequency 
resonance peaks with interval of 4.05 MHz, corresponding to the 247 ns peak in ACF traces, 
are observed on the electrical spectrum of the chaotic carrier. However, the frequency 
resonance peaks are disappeared for both linear and parabolic group delay curves, proving the 
TDS concealment capability of the FDGD module from the spectrum analysis method. 

To crack a traditional chaotic optical system, eavesdroppers need to figure out the 
feedback delay time first, typically with auto-correlation method. With the acknowledge of 
delay time, they can figure out other hardware parameters with mathematical methods, then 
the whole system can be reconstructed and the chaotic system can be cracked. However, the 
TDS is suppressed by FDGD in the proposed system, which will prevent eavesdroppers from 
figuring out the delay time. If eavesdroppers try to generate the same FDGD curve with the 
chaotic transmitter by traversal algorithm to crack the system, they have to know all the other 
parameters first, otherwise even if they have the right FDGD curve, data still cannot be 
recovered from chaotic time series. But in order to figure out chaotic hardware parameters, 
they have to know the cavity delay time first, which is suppressed by FDGD. In general, it is 
the chaotic carrier that conceals the FDGD curve, and the FDGD curve in turn prevents the 
chaotic system parameters to be cracked, they build up a robust security system together. 
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2.4 Key space enlargement 

After introducing the FDGD module into the chaotic system, the FDGD curve becomes a part 
of the secure key. According to the chaotic synchronization theory, the receiver should have a 
FDGD module made of the same material and with the same physical properties. Even so, 
mismatching in group delay curves due to different parameter setting of the FDGD module 
could result in decryption failure. This concept was proved by our simulation work. To 
demonstrate the security enhancement effect originated from the group delay curve of FDGD 
module, other influencing factors, that is, all the hardware parameters in the receiver side, are 
identical to that in the emitter in the following simulations. 

The security level is evaluated by calculating the bit error rate (BER) of the received 
signal. The BER result is calculated by comparing the decrypted message with the original 
one, instead of using the formula of signal-to-noise ratio (SNR) relation with BER, therefore 
with a higher level of accuracy. For complete decryption of the received signal, the FDGD 
curves in emitter and receiver must be have a high matching-degree, including the cascaded 
numbers of G-T etalons, the structure and hardware parameters such as the cavity material, 
thickness and facet relativity of each G-T etalon. Even with the same hardware setting, the 
temperature variation of each G-T etalon will slightly affect the refractive index and the 
cavity thickness therefore changing the free spectrum range (FSR) of the group delay curve 
and the group delay peak position. In the following simulation, we assume the FDGD 
modules in emitter and receiver have the exactly same hardware setting and the mismatch 
only comes from the temperature setting of each G-T etalon. Since the temperature coefficient 
of G-T etalon varies with the manufacturing material and structure of the etalon, it is more 
convenient to describe the temperature mismatch of etalons using frequency mismatch of the 
group delay peaks. 

 

Fig. 5. BER variation of the decrypted signal with the frequency mismatch of the FDGD 
modules in emitter and receiver. (a) The FDGD modules in emitter and receiver have a single 
G-T etalon configuration. (b) The FDGD modules in emitter and receiver have 16 cascaded G-
T etalons. The insets show corresponding eye diagrams. Black lines represent the BER results 
without decryption. Red and blue lines represent the evolution of BER according to the 
frequency mismatch of the center-positioned and edge-positioned etalon in FDGD module, 
respectively. 

Figure 5(a) and 5(b) show the BER variation with frequency mismatch in two cases of 
FDGD pairs. In Fig. 5(a) the FDGDs at emitter and receiver side consist only one etalon, 
while in Fig. 5(b) the FDGD pair with 16 cascaded etalons are used. It should be noted that 
each etalon can be tuned independently, and the frequency mismatch in Fig. 5(b) comes from 
one of the 16 cascaded etalons. Insets show the corresponding eye diagrams. The power ratio 
between the message and the chaotic carrier is set at 1:5 so that message can be effectively 
concealed in chaotic time series. The message is non-return-to-zero on-off-keying (NRZ-
OOK) signal operating at 10 Gb/s with pseudo-random bit sequence (PRBS) length of 231-1. 
As is presented above, the chaotic carrier bandwidth is mainly restricted by the bandwidth of 
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optical/electronic components in the feedback loop, but in simulation, we can easily adjust the 
chaotic bandwidth by changing the low and high cut off equivalent frequency in Eq. (10) and 
(11). In the following simulation, we set the chaotic bandwidth higher than 10 GHz, which is 
achievable using the commercial available components. Presumably, the influence of each 
etalon to synchronization quality will change with the relativeness of its center frequency to 
the center frequency of chaotic carrier. So both the influence of edge-positioned etalon, which 
means the group delay peak positioned at the edge of the chaotic carrier spectrum (blue line) 
and center-positioned etalon, whose group delay curve peak at the center of the chaotic carrier 
spectrum (red line) are investigated, and the BER before decryption is depicted in black line, 
where the FDGD module is not used in the receiver. The BER difference between red lines 
and blue lines in Fig. 5 proved our assumption that frequency mismatch of center-positioned 
etalons has much stronger influence on BER than edge-positioned etalons. Another important 
conclusion by comparing Fig. 5(a) and 5(b) is that as the number of cascaded etalons in 
FDGD increases, the synchronization quality will be more sensitive to the frequency 
mismatch of each etalon in FDGD. Considering the situation in Fig. 5(b) with 16 cascaded G-
T etalons, for legal users, BER below 10−5 can be achieved with a 1 MHz frequency mismatch 
of the center-positioned etalon, while for eavesdroppers, under the most insensitive situation, 
that is, for the edge-positioned etalon, a 10 MHz frequency mismatch will cause the BER to 
degrade to 10−2. For achieving perfect chaotic synchronization quality, the frequency tuning 
resolution of each etalon should be less than 1 MHz. Since a 0.001°C temperature tuning 
resolution can be achieved with commercially available thermal control solution, and 
considering the temperature coefficient of the etalon made by quartz is 0.67 GHz/°C around 
1550 nm, thus 0.67 MHz frequency tuning resolution is possible to be achieved using quartz 
made etalon. Noted that the FDGD module with 16 cascaded G-T etalons made of silicon is 
commercially available but the one made of quartz needs to be customization. For the 
eavesdroppers, 10 MHz frequency mismatch on edge-positioned etalon, corresponding to a 
BER of 10−2, is the critical point to achieve the useful information, therefore the 
eavesdroppers must tune the group delay peak of each etalon with a resolution of less than 10 
MHz to crack the information even if they get the same FDGD module in the receiver and all 
the other receiver parameters are matched with the emitter, which is almost impossible in 
practice. To calculate the key space, we consider the maximal frequency tuning range of each 
etalon is 10 GHz, within the spectral bandwidth of the chaotic carrier, corresponding to 
around 15°C tuning range of the quartz made G-T etalon. One etalon can contribute 103 (10 
GHz/10 MHz) key space to the security system, so 16 cascaded etalons together can enlarge 
the key space by 1048. Since for the center-positioned etalon, frequency mismatch beyond 4 
MHz will result in decryption failure, the key space should be much larger than 1048 in 
practice for the FDGD module with 16 cascaded G-T etalon made by quartz. Besides, from 
the calculation, we can see the key space of the proposed chaotic optical systems can be 
further improved by increasing the numbers of cascaded etalons, and increasing the spectral 
bandwidth of the chaotic carrier, which can be achieved by using high-speed modulator, RF 
driver and PD in the chaotic feedback loop. 

3. Discussion and conclusion 

In summary, we have proposed a chaotic optical system with a significant improvement in the 
level of security achieved by introducing a FDGD module into the electro-optic feedback 
chaotic system. In this proposed architecture, it is the chaotic carrier that conceals the FDGD 
curve, and the FDGD curve in turn prevents the chaotic system parameters to be cracked, so 
they build up a robust secure communication system together. It may be questioned that with 
such sensitivity to frequency shift, whether the unavoidable frequency detuning between the 
lasers and the FDGD curve causes detrimental effect. In fact, in the open-loop 
synchronization configuration, the laser output only serves as the optical carrier of the chaotic 
signal and will not affect the chaotic synchronization performance, which has also been 
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verified by our simulation, further proving the feasibility of the proposed scheme. We found 
there is no difference when we detune the laser wavelength between the chaotic emitter and 
receiver. Based on this principle, the laser wavelength could be modulated to increase the 
attack complexity for the eavesdroppers since it is more difficult to achieve the useful 
information from the broadened chaotic carrier spectrum. 

More importantly, from the viewpoint of practical implementation, the FDGD modules 
are rather easy to be manufactured with the same hardware parameters such as cavity 
material, cavity length, facet reflectivity and cascaded cavity numbers. The software 
parameters, which are the temperature setting of each cavity can be preset after calibration, 
therefore no security parameter distribution and synchronization are required as other digital 
encryption methods. Any two FDGD modules with the same hardware parameters and 
software setting can be used in chaotic emitter and receiver for chaotic generation and 
synchronization. Once a FDGD module is in failure, one can replace it using another FDGD 
module with the same setting. These features make it feasible for massive deployment of 
chaotic optical communication. 

Using theoretical and numerical investigation accompanied with experimental evaluation, 
we have proved that our proposed system integrates a valid time delay concealment and a 
huge additional key space without introducing much extra effort in implementation. As is 
presented in the article, a FDGD module with 16 G-T etalons will increase the key space of 
optical chaotic system by an impressive 1048, the key space can even be further enlarged by 
increasing the cascaded number of etalons and the spectral bandwidth of chaotic carrier. We 
take the cascaded number of 16 and the chaotic carrier bandwidth of 10 GHz as an example to 
evaluate the security level just because these components are commercially available and the 
chaotic optical systems based on them are feasible. Besides, except for the cascaded G-T 
etalons, any other optical component with reconfigurable FDGD function can be used to 
enlarge the key space, as long as an identical one is available at the receiver side to 
synchronize the chaotic carrier and decrypt the signal. We should aware of the fact that it’s 
very difficult to achieve an equivalent security key space with traditional encryption methods, 
which can employ complicate encryption algorithms. Even so, investigations on chaotic 
optical communications are still beneficial because the information can be physically 
protected, which provides physical-layer security on the basis of algorithm encryption 
methods. 

After solving the security issue of the chaotic optical communication, we assume 
increasing the chaotic transmission speed, extending the chaotic transmission distance and 
networking multiple chaotic nodes will become more important topics and the related work is 
under investigations now. We anticipate this research will pave the way for the practical 
applications of chaotic optical communication, as well as inspire other new ideas for chaos 
dynamics. 
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