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Fast Predicting the Complex Nonlinear Dynamics of
Mode-Locked Fiber Laser by a Recurrent Neural Network
with Prior Information Feeding
Guoqing Pu, Runmin Liu, Hang Yang, Yongxin Xu, Weisheng Hu, Minglie Hu, and Lilin Yi*

As an imperative method of investigating the internal mechanism of
femtosecond lasers, traditional femtosecond laser modeling relies on the
split-step Fourier method (SSFM) to iteratively resolve the nonlinear
Schrödinger equation suffering from the large computation complexity. To
realize inverse design and optimization of femtosecond lasers, numerous
simulations of mode-locked fiber lasers with different cavity settings are
required, further highlighting the time-consuming problem induced by the
large computation complexity. Here, a recurrent neural network is proposed
to realize fast and accurate femtosecond mode-locked fiber laser modeling.
The generalization over different cavity settings is achieved via the proposed
prior information feeding method. With the acceleration of GPU, the mean
time of the artificial intelligence (AI) model inferring 500 roundtrips is less
than 0.1 s, which is ≈146 times faster than the SSFM running on a CPU. The
proposed AI-enabled method is promising to become a standard approach to
femtosecond laser modeling.

1. Introduction

Femtosecond mode-locked fiber lasers now occupy the heart po-
sition in high-precision metrology including distance ranging,[1]

frequencymeasurement,[2] and various imaging applications.[3,4]

The characteristics of femtosecond pulses (i.e., pulse durations
and pulse shapes, etc.) generated by mode-locked fiber lasers
can vary with different cavity settings and the versatile pulse
output from the dedicatedly-designed mode-locked fiber laser is
promising to meet the requirements of different applications.

G. Pu, H. Yang, Y. Xu, W. Hu, L. Yi
State Key Lab of Advanced Communication Systems and Networks
School of Electronic Information and Electrical Engineering
Shanghai Jiao Tong University
Shanghai 200240, China
E-mail: lilinyi@sjtu.edu.cn
R. Liu, M. Hu
Ultrafast Laser Laboratory
Key Laboratory of Opto-electronic Information Science and Technology of
Ministry of Education
College of Precision Instruments and Opto-electronics Engineering
Tianjin University
Tianjin 300072, China

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/lpor.202200363

DOI: 10.1002/lpor.202200363

Femtosecond mode-locked fiber laser
modeling is an imperative approach for
theoretically investigating the evolution
dynamics of various regimes, which can
give theoretic references for experimen-
tal laser design.However, traditional fem-
tosecond mode-locked fiber laser mod-
eling relies on the split-step Fourier
method (SSFM) to iteratively resolve the
nonlinear Schrödinger equation using a
rather small step size,[5] which could cost
plenty of time to simulate the laser out-
put under different cavity settings. The
low-efficiency SSFM undoubtedly hin-
ders the development of the inverse de-
sign and optimization of femtosecond
lasers,[6,7] where numerous simulations
are required.
In recent years, the combination of

artificial intelligence (AI) and optics
has drawn many concerns from the

academic community.[8] AI techniques manifest extraordinary
talents in equalization thereby improving the capacity of optics
communication systems.[9,10] In laser optics, AI techniques sub-
stantially enhance the automatic optimization of mode-locked
lasers[11–21] and the deep learning-based pulse characterization
reveals outstanding robustness against noise.[22,23] The modula-
tion instabilities in optical fiber are analyzed by a fully-connected
neural network[24] and precise phase retrieval in the interfero-
metric fringe patterns is also achieved by AI models.[25,26] On
the other hand, with GPU-enabled compute unified device archi-
tecture (CUDA), the feed-forward computation of AI models can
be substantially accelerated by parallel computing. Recently, the
propagation inside optical fiber of high-order solitons and super-
continuum generation is simulated by AI techniques accurately,
which is several orders of magnitude faster than the traditional
SSFM.[27] Then, a differential training approach is proposed to
further reduce the computational complexity.[28]

However, it is a rather challenging task of modeling the fem-
tosecond mode-locked fiber laser via AI techniques. First, com-
pared to the soliton propagation and supercontinuum generation
situations, the laser cavity is more complex due to the deeply-
involved interplay among loss, gain, dispersion, nonlinearities,
and other effects (e.g., saturate absorption). Second, unlike the
previous research,[27,28] the signal iteratively propagates inside
the cavity for laser modeling. As a result, the impact of the
aforementioned interplay on the ultimate laser output enhances
as intra-cavity roundtrips increase, which further impedes the
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accurate femtosecond mode-locked fiber laser modeling using
AI. Moreover, the imperative prior information of the laser set-
tings (i.e., gain and cavity length) is crucial to ultimate laser out-
put but is hidden from the AI models where the signal is usu-
ally taken as the only input.[27,28] The prediction accuracy and
the generalization ability of the AI model are bound to suffer
a tremendous loss when missing the imperative prior informa-
tion. The recent rise of physics-informed neural network (PINN)
manifests itself as a method with superior performance in mod-
eling nonlinear partial derivative equations[29,30] and seems to be
a good candidate for femtosecond mode-locked fiber laser mod-
eling. Nevertheless, suffering from the strong bond between the
PINN and the modeled physical equations, the generalization
ability of the PINN is considerably confined.[30] Hence, the PINN
is not suitable for femtosecond mode-locked fiber laser model-
ing where generalization over various cavity settings is neces-
sary. Until now, AI-based mode-locked fiber laser modeling still
remains an open issue.
Here, a recurrent neural network (RNN) is used to realize fast

and accurate femtosecond mode-locked fiber lasers modeling. In
particular, to address the generalization problem of the AI model
over various cavity settings, we propose a dimension-expansion-
based prior information feeding method by which the prior cav-
ity settings excluded by the signal can be appropriately fed to the
AI model thereby assisting the model to infer. Our simulation
results turn out that the proposed AI model with prior informa-
tion feeding can complete the inference of 500 roundtrips less
than 0.1 s on average with the acceleration of CUDA, which is
≈146 times faster than the SSFM running on a CPU. Even on an
identical CPU-based hardware platform, the proposed AI model
is still 6 times faster than the traditional SSFM. The generaliza-
tion over the different cavity settings such as cavity length and
gain is achieved by the RNN with prior information feeding. We
hope our results could be a spark to inspire the extensive applica-
tion of AI techniques in femtosecond laser modeling and other
nonlinear optical systems.

2. Principles

2.1. Data Generation via SSFM

The intra-cavity optical field evolutionary process is governed by
the modified nonlinear Schrödinger equation as shown in Equa-
tion (1). In Equation (1), T and Z are respectively the time and
distance variables, A is the optical field envelope and 𝜔0 is the
central angular frequency. 𝛼, 𝛽2, 𝛽3, and 𝛾 are the fiber loss, the
second-order dispersion, the third-order-dispersion, and nonlin-
ear coefficient, respectively. Ωg is the gain bandwidth. The gain
process is described with the saturate gain g = g0∕(1 + Ep∕Es),
where g0 is the small signal gain, Ep is the pulse energy, and Es
is the saturate energy. The SSFM is a universal method to itera-
tively solve the nonlinear Schrödinger equation. The core idea of
the SSFM is to split the fiber to propagate into numerous steps.
For each step, only linear effects (i.e., dispersion, gain, and loss)
or nonlinearities (i.e., self-phase modulation and self-steepening
effect) are considered. The step size of the SSFM, the length of
each step, is usually very small to ensure modeling accuracy and
the step size is 1 cm in our simulations. Figure 1 shows the sim-
ulated femtosecond laser operating in the C band. The laser is

Figure 1. The simulated erbium-doped femtosecond laser. WDM, wave-
length division multiplexer; EDF, erbium-doped fiber; SMF, single mode
fiber; SA, saturate absorber

pumped by a 0.3-m erbium-doped fiber (EDF), which is modeled
by the saturate gain g. A piece of single mode fiber (SMF) is in-
serted to tune the cavity length. The saturate absorber (SA) acts
as a mode locker with a modulation depth of 8% and saturable
energy of 30 pJ. Subsequently, 10% of the energy is sent outside
the cavity through a coupler. Note that the laser modeled by AI in
this work operates under a traditional soliton regime with a SA
as the mode locker. However, the proposed AI modeling method
can also adapt to other types of mode-locked fiber lasers as long
as the AI model is trained with the corresponding data.
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The simulation temporal window is 20 ps represented with
256 points. In the data generation via SSFM, the small signal
gain g0 is randomly selected in a range from 2 to 4.5, which cov-
ers the cases of failure to form a soliton, soliton formation, and
soliton molecule formation. The length of the SMF inside the
cavity is also randomly selected, therefore, the cavity length can
range from 1.03 m to 2.05 m corresponding to a fundamental
repetition rate ranging from 100 to 200 MHz. To reduce the data
amount, a fixed secant pulse with a duration of 5 ps is used as
the initial state to accelerate the evolutionary process. The pulse
seeding simulation method is common in the mode-locked fiber
laser modeling.[31–33] The max roundtrip number is fixed at 500
in simulations. Note that only one frame of data is recorded in
each roundtrip manifesting a down-sampling operation in the
frames. However, different from previous studies,[27,28] here the
down-sampling rate is not fixed since the cavity length is chang-
ing thereby hampering the AI from learning the internal relation
between frames. 1000 sets of data with random gain and funda-
mental repetition rates are generated via SSFM, where 960 sets
are used for training, 20 sets are used for validation, and the rest
20 sets for the test.

2.2. The AI Model and the Error Metric

Figure 2a shows the AI model structure for the femtosecond
mode-locked fiber lasermodeling. To retrieve the optical complex

Laser Photonics Rev. 2023, 17, 2200363 © 2023 Wiley-VCH GmbH2200363 (2 of 9)

 18638899, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/lpor.202200363 by Shanghai Jiaotong U

niversity, W
iley O

nline L
ibrary on [12/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.lpr-journal.org


www.advancedsciencenews.com www.lpr-journal.org

Figure 2. a) The AI model with prior information feeding for intra-cavity evolutionary process inference. SSFM, split-step Fourier method; LSTM, long-
short term memory. b) The workflow for using the AI model.

field with one neural network, the complex data of each roundtrip
is unpacked before training thereby forming a 512-dimension
vector, which is interleaved with real parts and imaginary parts.
In previous studies where AI is used for high-order soliton prop-
agation and supercontinuum generation,[27,28] the fiber channel
is certain and all the information is contained in the frame data.
Here, the first frame data is identical for different data sets. The
evolutionary process is dominated by the small signal gain and
cavity length, which are prior information excluded by the frame
data. Therefore, a dense layer is used to complete the prior in-
formation feeding described in Equation (2), where P is a 2-by-1
vector containing two prior parameters, A is a 512-by-2 weight
matrix and b is the bias of the dense layer for prior information
feeding. Then, a layer normalization operation (LN) is applied to
the dimension-expansion result forming a 512-by-1 vector carry-
ing prior information. Finally, the “prior vector” is broadcasted
and added to the frame data X with a dimension of 512-by-W
before the sequential layers, W is the sequence length and the
broadcasting add means each roundtrip in X needs to add the
“prior vector”. As a result, the sequential data XP carrying both
signal and prior information is obtained.

XP = LN (A ⋅ P + b) + X (2)

Two unidirectional long-short termmemory (LSTM) layers are
used to capture the temporal relation along roundtrips and the
sequence length is denoted as W in Figure 2. Here, we choose
a sequence length of 14. A dense layer summarizes the output
of LSTM layers and predicts the next roundtrip. During training,
the W input roundtrips of LSTM layers stream from the gener-
ated via SSFM. However, when inferring, the last roundtrip in
theW input roundtrips is the previous prediction output by the
model itself. The sequence of the input roundtrips functions like
a sliding window. Note that we padW − 1 roundtrips, which are
all identical to the first roundtrip, to form W input roundtrips
when predicting the second roundtrip. The workflow for using
the AI model is shown in Figure 2b. The first step is to accu-
rately model the real mode-locked fiber lasers using the theoreti-
cal SSFM-based modeling. Once the accurate SSFM-based mod-
eling is realized, the modeling process can be substantially accel-
erated via training the AI model with numerous data generated
by the SSFM model.

To quantitively evaluate the performance of the proposed AI
model, a normalized root-mean-squared error (NRMSE) indi-
cated in Equation (3) is used, where DSSFM is one real-and-
imaginary-interleaved roundtrip generated by the SSFM and
Dpred is the corresponding AI prediction. Here, m is the largest
number of the real parts and imaginary parts among all the test
datasets, K denotes the number of test data sets (K = 20 in
this case), R denotes the number of roundtrips in one data set
(R = 500 in this case), N denotes the dimension of one real-
and-imaginary-interleaved roundtrip (N = 512 in this case).

𝜀NRMS =

√∑
k, r, n (Dpred −DSSFM)

2∕m2

K ⋅ R ⋅ N
(3)

3. Results

3.1. Soliton Formation

Soliton is the product of the interplay between nonlinearities and
anomalous dispersion. Figure 3b demonstrates the single soli-
ton formation process in the spectral domain simulated by SSFM
and the proposed AI model. The small signal gain g0 is 2.85 and
the cavity length reaches 1.4 m corresponding to a fundamental
repetition rate of 146.7 MHz. It is obvious that the AI accurately
predicts the soliton formation process including the spectral beat-
ing behavior before the spectrum settles down.[34–36] The full-field
signals of the 100th roundtrip and the 500th roundtrip are respec-
tively shown in Figure 3a and Figure 3c, and the ultimate pulse
duration is 390 fs. It turns out that the full-field soliton forma-
tion process is well modeled by one AI model. Note that because
the intensity on the sides is quite small, the phase on the sides is
meaningless for both the temporal domain and the spectral do-
main. The soliton formation with different evolution dynamics
and ultimate pulse duration is demonstrated in Figure S1, Sup-
porting Information.

3.2. Soliton Molecule Formation

The laser generates a soliton molecule when further increas-
ing the gain. The temporal soliton molecule formation pro-
cesses under a gain of 3.96 simulated by SSFM and the pro-
posed AI model are demonstrated in Figure 4b. The cavity length
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Figure 3. The soliton formation comparison between the SSFM and the AI model under a gain of 2.85 and a cavity length of 1.4 m. a) The full-field
signal comparison at the 100th roundtrip. b) The spectral soliton formation process of the SSFM (left) and the AI model (right). c) The full-field signal
comparison at the 500th roundtrip and the ultimate pulse duration is 390 fs. The SSFM-generated results are in solid lines while the AI predictions are
in dashed lines in (a) and (c).

Figure 4. The soliton molecule formation comparison between the SSFM and the AI model under a gain of 3.96 and a cavity length of 1.55 m. a) The
full-field signal comparison at the 150th roundtrip. b) The spectral soliton molecule formation process of the SSFM (left) and the AI model (right). c)
The full-field signal comparison at the 500th roundtrip. d) Variations of the inter-soliton separation 𝜏 (top curves) and the inter-soliton relative phase 𝜙
(bottom curves) along roundtrips and the ultimate inter-soliton separation is 1.8 ps. e) The clockwise evolutionary trajectories of the SSFM (left) and
AI (right) in the interaction plane (the radius is the inter-soliton separation and the angle is the relative phase). The SSFM-generated results are in solid
lines while the AI predictions are in dashed lines in (a) and (c). The SSFM-generated results are in rosy red while the AI predictions are in gray in (d).

is 1.55 m and the corresponding fundamental repetition rate
reaches 132.56 MHz. Because the evolutionary process is not
converged at the 500th roundtrip yet (i.e., the inter-soliton sep-
aration 𝜏 and the inter-soliton relative phase 𝜙 is not settled at
the 500th roundtrip as shown in Figure 4d), we further sim-
ulate 800 roundtrips and force the AI model to predict 800
roundtrips, which is beyond the training scope of 500 roundtrips.
As shown in Figure 4b, the spectral evolution dynamics of soliton
molecule formation is accurately retrieved by the AI model. Even
in the roundtrips beyond the training scope (i.e., from the 500th
roundtrip to the 800th roundtrip as highlighted by the dashed box
in Figure 4b), the evolutions of spectral fringes are well predicted

thereby manifesting the powerful generalization ability of the AI
model over propagation distance. Themaximum roundtrip num-
ber can be accurately predicted by the AI model varying from one
cavity setup to another. Figure 4a and Figure 4c demonstrate the
full-field signal comparisons at the 150th roundtrip and the 500th
roundtrip, respectively. AI can both precisely emulate the sym-
bolic fringe-pattern spectrum and the step-wise spectral phase of
solitonmolecule, proving the validity of full-field signalmodeling
via AI.
Moreover, the inter-soliton separation 𝜏 and the inter-soliton

relative phase 𝜙 are extracted and their variations along
roundtrips are shown in Figure 4d. The inter-soliton separation
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can be simply obtained by performing the Fourier transform
on the spectrum.[35,36] The inter-soliton relative phase ranging
from 0 to 2𝜋 rad is extracted through a calculation involving
inter-soliton separation, the central angular frequency, and the
two wavelengths corresponding to the maximum two spectral
peaks.[36] In Figure 4d, the top curves show the inter-soliton sep-
aration variation and the bottom curves show the inter-soliton
relative phase variation. The entire evolution can be divided into
three sections, which are the single-soliton section, the transient-
soliton-molecule section, and the stable-soliton-molecule section.
As shown in Figure 4d, at the beginning of the transient-

soliton-molecule section, there is a period of chaotic evolution
where the inter-soliton separation and relative phase are com-
pletely random. Then, an obvious transient soliton molecule is
derived from the chaotic evolution (see Figure 4a) and the inter-
soliton separation gradually rises till the stable soliton molecule
is formed, whose inter-soliton separation and relative phase set-
tle down to 1.8 ps and 2.01 rad, respectively. The predicted inter-
soliton separation exhibits high consistency with the actual AI
inter-soliton separation, even in the period of chaotic evolution.
The same situation can also be found in the comparison between
the actual and predicted inter-soliton relative phase. The regular
step-wise shifts in the relative phase originate from the energy
instabilities.[32] However, the mismatch between the actual and
predicted inter-soliton relative phase magnifies as the roundtrip
increases mainly due to the inherent error accumulation and
propagation of the time series prediction. Concretely, the AI re-
ceives the correct data generated by the SSFM as the input in the
training process. While during inferring, the previous prediction
is feedback to the input for the next roundtrip inference. Thus,
the error accumulates and propagates in the inferring process.
Figure 4e visually demonstrates the evolutionary process of the

inter-soliton separation and the relative phase in the interaction
plane, where the radius is the inter-soliton separation and the
angle is the relative phase, from the 200th roundtrip to the 800th
roundtrip, which is behind the period of chaotic evolution for bet-
ter visual effects. Because both evolutionary trajectories rotate in
a clockwise direction and settle down to two very close positions
in the interaction plane as indicated by two green dots in Fig-
ure 4e. The evolutionary trajectories of the SSFM and AI man-
ifest strong consistency and the residual inconsistency mainly
streams from the relative phase mismatch in the zone where the
roundtrip number is beyond the training scope. For instance, the
predicted relative phase is 0.57 rad ahead of the actual relative
phase at the 580th roundtrip as illustrated in Figure 4d. Since
inter-soliton separations of the SSFM and the AI are very close
when the roundtrip number is beyond the training scope, the
phase overrun corresponds to a placement lead in the rotary evo-
lutionary trajectory as illuminated in Figure 4e by comparing the
positions of the two rosy red dots. As shown in Figure 4d, when
the roundtrip number surpasses 500, the predicted relative phase
observably overruns the actual relative phase formost roundtrips.
As a result, the predicted evolutionary trajectory rotates faster av-
eragely in the interaction plane. Nevertheless, the evolutionary
trajectory of the SSFM first reaches the destination (i.e., the sta-
ble soliton molecule) since the relative phase of the SSFM comes
from behind as shown in Figure 4d. Therefore, these pace differ-
ences result in slight differences between the two evolutionary
trajectories. Overall, the proposed AI model successfully emu-

Table 1. Comparison between AI models with different numbers of LSTM
layers and the SSFM.

1 LSTM layer 2 LSTM layers 3 LSTM layers SSFM

NRMSE 2.428 0.102 0.105 N/A

FLOPsa) 6.360e7 1.477e8 2.317e8 N/A

Number of parameters 6.826e6 1.522e7 2.362e7 N/A

Simulation time with
CUDAb)

0.067 s 0.090 s 0.132 s N/A

Simulation timec) 1.034 s 2.106 s 3.293 s 13.145 s

a )Floating point operations;
b )The mean time of 200 simulations over an Nvidia

RTX2080Ti GPU;
c )The mean time of 200 simulations over an AMD Ryzen 7 5800H

CPU.

lates the sophisticated evolution dynamics of the solitonmolecule
formation. Figure S2, Supporting Information, shows the soliton
molecule formation with different evolution dynamics and the
ultimate inter-soliton separation.

3.3. Failure of Forming a Soliton

When the gain is too small, the laser even fails to form a soliton.
Given a gain of 2.07 and a cavity length of 1.97 m, the evolution
dynamics simulated by SSFM and the proposed AI model are
shown in Figure 5b. The AI is aware of the small gain via prior
information feeding. Thus, it successfully predicts the final re-
sult of no-soliton formation. However, due to the small gain, the
initial secant pulse becomes weaker along with the propagation
and the intensity is comparable to noise. On the other hand, the
aforementioned error accumulation and propagation problem of
the time series prediction also contributes to prediction errors.
Therefore, the AI cannot grasp the intensity and phase details as
shown in Figure 5a and Figure 5c.

4. Discussions

4.1. Performance Dependence on the Number of LSTM Layers

To investigate the performance dependence of the proposed AI
model on the number of LSTM layers, 3 separate models with
different numbers of LSTM layers are trained and tested under
a fixed sequence length ofW = 10. Table 1 shows the compari-
son among these models in terms of the performance, computa-
tional complexity, model scale, and simulation time. The model
using only 1 LSTM layer performsworst with anNRMSE of 2.428
thereby failing to predict the evolution dynamics. After adding
an LSTM layer, the NRMSE substantially reduces to 0.102 and
the model can make an accurate prediction. However, further in-
creasing the number of LSTM layers does not receive the per-
formance improvement as expected. In virtue of the accelera-
tion of CUDA, the 2-LSTM-layer model averagely consumes only
0.09 s to predict one data set with 500 roundtrips, which is ≈146
times faster than the SSFM running on a CPU. When testing on
an identical AMD-CPU-based platform, the 2-LSTM-layer model
is still ≈6 times faster than the SSFM. On the other hand, less
computational-intense convolutional layers are also applied to
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Figure 5. In the case of failing to form a soliton, the evolution dynamics comparison between the SSFM and the AI model under a small gain of 2.07
and a cavity length of 1.97 m. a) The full-field signal comparison at the 100th roundtrip. b) The temporal evolution dynamics of the SSFM (left) and the
AI model (right). c) The full-field signal comparison at the 500th roundtrip. The SSFM-generated results are in solid lines while the AI predictions are in
dashed lines in (a) and (c).

Table 2. Comparison between AI models with different sequence lengths
and the SSFM.

W = 6 W = 10 W = 14 W = 18 SSFM

NRMSE 0.105 0.102 0.086 0.089 N/A

FLOPs 8.880e7 1.477e8 2.065e8 2.654e8 N/A

Simulation time
with CUDAa)

0.078 s 0.090 s 0.104 s 0.134 s N/A

Simulation timeb) 1.366 s 2.106 s 2.899 s 3.709 s 13.145 s

a )The mean time of 200 simulations over an Nvidia RTX2080Ti GPU;
b )The mean

time of 200 simulations over an AMD Ryzen 7 5800H CPU.

learning the temporal relations between sequential roundtrips
but it turns out to be much worse than using LSTM layers. Accu-
rate prediction with higher temporal resolution can be achieved
by adding more hidden units in both the LSTM layers and the
dense layer but it demands more computational resources for
both the traditional SSFM and the AI model.

4.2. Performance Dependence on the Sequence Length of LSTM
Layers

The sequence length is a critical hyper-parameter to sequence
models. To evaluate the performance dependence of the proposed
AI model on the sequence length, we train and test 4 separate
models with different sequence lengths with 2 LSTM layers and
the comparison results are shown in Table 2. All the AI models
can accurately infer the evolution dynamics under various combi-
nations of the gain and cavity length. As sequence length linearly
increases, the computational complexity also linearly increases
but the performance enhancement is trivial. The performance
even drops when the sequence length increases from 14 to 18. In
our simulations, the best sequence length is around 14.

4.3. Generalization Over Different Initial Pulses and Longer
Cavities

Currently, the AI model cannot adapt to the dataset using the
noise seeding method. Given an identical cavity setting, both the

noise seeding method and the pulse seeding method settle on
nearly identical lasing regimes in SSFM simulations as shown
in Figure 6, thereby manifesting the reasonability of using the
pulse seeding method, which is common in mode-locked fiber
laser modeling to accelerate the evolutionary process.[31–33] Thus,
stable lasing regimes can be achieved in fewer roundtrips thereby
reducing the data amount. On the other hand, as shown in Fig-
ure 7, the AI model itself can be generalized to various initial
pulses with different durations, energies, and chirps.
Longer cavities are very challenging as well. The mode-locked

fiber laser is a particularly complex environment incorporating
loss, gain, dispersion, nonlinearities, and other effects (e.g., sat-
urate absorption). It is extremely challenging for AI to predict
long-range light propagation in such a sophisticated environ-
ment. To accurately predict the 500-roundtrip evolution dynam-
ics of a laser whose cavity length is 2 m corresponding to an
FSR of ≈100 MHz, the AI needs to accurately predict 1 km long-
range light propagation, which is far longer than the previous
studies.[27,28] The situation becomes worse as the cavity length
further increases.
To resolve the challenge, a separate model with an identical

structure to the previous model is trained with a dataset where
the FSR of laser cavities ranges from 50 to 80 MHz. Figure 8
shows comparisons between the SSFM-simulated and the pre-
dicted evolutionary dynamics in longer cavities with FSR of 78.2
and 54.31 MHz. The precision of the AI model suffers a slight
loss when predicting in longer cavities. As a result, the predicted
soliton can be temporally shifted from the ground truth as illus-
trated in Figure 8c, but the predicted spectrum is consistent with
the ground truth very well. According to the theory of Fourier
transform, the temporal shift only corresponds to a linear drift
of the spectral phase. Sequentially, the intensity and phase of the
temporal soliton are accurately predicted. As the cavity length in-
creases, the net anomalous dispersion also increases giving rise
to Kelly sidebands, which can be observed at the bottom of Fig-
ure 8c. As shown in the bottom of Figure 8f, the Kelly sidebands
become more obvious when the cavity length continues increas-
ing. In general, the AI model can be generalized to longer cavi-
ties.
Furthermore, modeling longer cavities using the traditional

SSFM costs more time compared to modeling shorter cavities.

Laser Photonics Rev. 2023, 17, 2200363 © 2023 Wiley-VCH GmbH2200363 (6 of 9)
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Figure 6. The stable lasing regimes comparison between the noise seedingmethod and the pulse seedingmethod in SSFM simulations. a) In a 200MHz
cavity. b) In a 50 MHz cavity. The noise seeding method in solid lines and the pulse seeding method in dashed lines.

Figure 7. The AI model accurately predicts the evolutionary process under different seed pulses and cavities. a) A seed pulse with a duration of 9.11 ps,
an energy of 7.27 pJ, and a linear chirp of −0.099, and b) the corresponding comparison between the SSFM-simulated and predicted soliton buildup
processes in the cavity with an FSR of 176.48 MHz. c) The other seed pulse with a duration of 7.15 ps, an energy of 7.13 pJ, and a linear chirp of 0.094,
and d) the corresponding comparison between the SSFM-simulated and predicted soliton-molecule buildup processes in the cavity with an FSR of
179.07 MHz.

However, the time expenditure of the AI model is independent
of the cavity length. As a result, the superiority of the AI model
over the time-consuming performance becomes more evident as
the cavity length increases. Specifically, over 200 simulations, the
AI model using a sequence length of 14 averagely costs 0.11 s to

predict one data set with 500 roundtrips under the acceleration
of CUDA, which is close to the time consumption when predict-
ing in shorter cavities. In the same test, the SSFM averagely costs
18.99 s on the AMD-CPU-based platform, which is ≈172 times
slower than the AI accelerated by CUDA.

Laser Photonics Rev. 2023, 17, 2200363 © 2023 Wiley-VCH GmbH2200363 (7 of 9)
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Figure 8. a–c) The soliton formation comparison between the SSFM and the AImodel under a laser cavity with a fundamental repetition rate of 78.2MHz.
(a) The full-field signal comparison at the 120th roundtrip. (b) The spectral soliton formation process of the SSFM (left) and the AI model (right). (c)
The full-field signal comparison at the 500th roundtrip and the inset is the closer look of solitons. d–f) The soliton formation comparison between the
SSFM and the AI model under a laser cavity with a fundamental repetition rate of 54.31 MHz. (d) The full-field signal comparison at the 100th roundtrip.
(e) The spectral soliton formation process of the SSFM (left) and the AI model (right). (f) The full-field signal comparison at the 500th roundtrip. The
SSFM-generated results are in solid lines while the AI predictions are in dashed lines in (a), (c), (d), and (f).

5. Conclusion

To summarize, we demonstrate a completely data-drivenmethod
for modeling the femtosecond mode-locked fiber laser. Through
the proposed prior information feeding, the AI model delivers
robust generalization over the intra-cavity gain and cavity length.
The AI model merely costs 0.09 s to predict one data set with 500
roundtrips with the acceleration of CUDA, which is ≈146 times
faster than the SSFM running on a CPU. We anticipate the su-
perior running-time advantage of the AI model could substan-
tially accelerate rising smart laser applications where numerous
simulation data is required, for instance, the inverse design and
optimization of femtosecond lasers.[6,7] Further, we hope that the
AI model could be adopted in other types of femtosecond lasers
and becomes a general approach in the area of femtosecond laser
modeling.
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