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Abstract—Responding to the growing bandwidth demand by
emerging applications, such as fixed-mobile convergence for fifth
generation (5G) and beyond 5G, 100 Gb/s/λ access network be-
comes the next research focus of passive optical network (PON)
roadmap. Intensity modulation and direct detection (IMDD) tech-
nology is still considered as a promising candidate for 100 Gb/s/λ
PON attributed to its low cost, low power consumption, and small
footprint. In this paper, we achieve 100 Gb/s/λ IMDD PON by us-
ing 20G-class optical and electrical devices due to its commercial
availability. To mitigate the system linear and nonlinear distortions,
neural network (NN) based equalizer is used and the performance
is compared with feedforward equalizer (FFE) and Volterra non-
linear equalizer (VNE). We introduce the rules to train and test
the data while using NN-based equalizer to guarantee a fair com-
parison with FFE and VNE. Random data have to be used for
training, but for test, both random data and pseudorandom bit
sequence are applicable. We found that the NN-based equalizer
has the same performance with FFE and VNE in the case of linear
distortion, but outperforms them in a strong nonlinearity case. In
the experiment, to improve the loss budget, we increase the launch
power to 18 dBm, achieving a 30-dB loss budget for 33 GBd/s PAM8
signal at the system frequency response of 16.2 GHz, attributed to
the strong nonlinear equalization capability of NN.

Index Terms—Digital signal processing (DSP), intensity mod-
ulation and direct detection (IMDD), machine learning, neural
network (NN), passive optical network (PON).

I. INTRODUCTION

NOWADAYS, increasing bandwidth-consuming applica-
tions and market-demanding factors have been driving the

need for higher-speed access network, such as the rapid growth
of the high-definition video streaming services, the burst of
smart devices of Internet of Things (IoT) and the development
of wireless backhaul of 5G [1], [2]. Recently IEEE 100G Eth-
ernet passive optical network (EPON) task force was created
and focused on standardizing a solution for next-generation
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low-cost EPON [3]. The objectives of the task force are to
standardize a 25, 50 and 100G PON. By multiplexing two or
four wavelengths with the bit rate of 25 Gb/s/λ, 50 Gb/s or
100 Gb/s system capacity can be achieved [4]. However, the
gain spectrum of Erbium doped fiber amplifier (EDFA) is fixed
between dozens of nanometers [5]. Though many experimental
laboratory techniques have been invented to increase EDFA’s
bandwidth [6], [7], the useable EDFA bandwidth is still lim-
ited. With more and more wavelength occupied, it becomes the
most valuable resource in optical communication. Besides, the
capacity improvement from already-deployed 10G PON to 25G
PON is only a small step for real deployment. Currently standard
groups like IEEE 802.3ca and ITU-T SG15 are working on their
50 Gb/s/λ PON industry standard, with the goal of deployment
in the next few years. Several feasible 50 Gb/s/λ solutions have
been proposed during the past several years. Due to the nature
requirement of low cost in PON, optics with limited bandwidth,
advanced modulation formats and advanced digital signal pro-
cessing (DSP) are widely chosen as the main research topic
of 50 Gb/s/λ PON. Algorithms like feed-forward equalization
(FFE), maximum likelihood sequence estimation (MLSE), and
Volterra nonlinear equalization (VNE) have been investigated
to overcome the limitation of channel impairment [8]–[12]. To
further increase the loss budget, some optical functions have
also been introduced such as dispersion shifted fiber (DSF) and
semiconductor optical amplifier (SOA) [13]–[15].

While the research and standardization of 50 Gb/s/λ are
steadily progressing, we decide to move forward and pay more
attentions to the next step 100 Gb/s/λ PON research demanded
by emerging applications such as fixed-mobile convergence
for 5G and beyond 5G. Coherent technology is regarded as
a promising candidate for such high bandwidth PON due to
its high receiver sensitivity. 100 Gb/s/λ coherent PON has
been experimentally demonstrated with receiver sensitivity of
−33.8 dBm, which is difficult to be achieved for direct detec-
tion [16]. On the other hand, coherent technology is consid-
ered with high cost, high power consumption and large phys-
ical footprint. In contrary, intensity modulation and direct de-
tection (IMDD) transmission system is obviously simpler and
more cost-effective [17], and there have already been quite a
lot research on IMDD based 100 Gb/s/λ transmission espe-
cially in short reach applications [18]. Different from the point-
to-point short reach applications where loss budget is not an
important parameter, 100 Gb/s/λ PON applications are more
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challenging due to the high loss budget requirement. Until now,
there have been no demonstration on IMDD-based 100 Gb/s/λ
PON yet. Therefore we attempt to investigate the possibility
of using IMDD technologies rather than coherent technolo-
gies for 100 Gb/s/λ PON. Considering the rapid progress of
50 Gb/s PAM4 techniques for Ethernet applications, 20G-class
transmitter and receiver have become quite mature and commer-
cially available, therefore we reuse the 20G-class components in
IMDD based 100 Gb/s/λ PON applications to reduce the system
cost.

Due to the strict bandwidth limitation, inter-symbol-
interference (ISI) becomes a severe problem to limit the system
performance, therefore powerful equalizers are required as pre-
vious 50 Gb/s/λ PON applications. Apart from the traditional
equalizers such as FFE, MLSE and VNE, nowadays machine
learning has been considered as a powerful equalization tool
to mitigate both linear and nonlinear distortions in optical com-
munications [19]–[24]. Machine learning, especially neural net-
work (NN) has become very popular these years and shown its
strength in the domain of computer vision and machine trans-
lation. Afterwards, NN comes into view of optical communica-
tions. Several previous papers have been utilizing NN to improve
system performance. Some of them use NN as an assistance to
other algorithms [4], while some others directly apply it as an
equalizer [19]–[21]. In many experiments, NN shows signifi-
cantly better performance than the traditional equalizers, which
makes the researchers believe it will be a promising candidate
as an advanced DSP technique in both long-haul transmission
and short reach applications. However, it was pointed out the
performance of machine learning based equalization may be
overestimated since in the case that psudo-random bit sequence
(PRBS) is used to train the model and also used to test the
model, NN may recognize the pattern of PRBS data resulting
in superior performance [21]. However, if using PRBS data as
training sequence, and random data as test sequence, the perfor-
mance will be much worse. Unfortunately, in most of previous
experiments, PRBS data is used as both the training and test se-
quences, therefore the previous experimental results need to be
carefully re-evaluated. In the simulation of [21], using random
data as both training and test sequences, NN still shows equaliza-
tion capability and better performance than the no-equalization
case. However, there is no performance comparison with the
traditional equalizers such as FFE and VNE, therefore a natural
question comes out: will NN-based equalizer under the correct
training and test way still outperforms the traditional equalizers?

In this paper, we firstly re-visit the training and test ways of
NN-based equalizer and interestingly found that the NN does
not just simply recognize the pattern of PRBS data after ex-
tensively training, but characterizes the function to generate the
PRBS pattern. Therefore the performance of NN is still overes-
timated and much better than the real case, even if using the first
part sequence of a long PRBS pattern as training data and the
other part of the rest sequence as test data, where the training
and test data have completely different patterns. In this case,
NN is considered as a powerful modeling tool rather than an
equalization tool. To guarantee that NN only learns the chan-
nel characteristics, we have to use random data without pattern

characteristics as the training sequence. In this case, NN is re-
garded as a real equalizer, and for the test data, both random data
and PRBS data are applicable. Anyone who uses PRBS data as
the training sequence for equalization objective will get the in-
correct results. Then we compare the performance of NN-based
equalizer under the correct training and test conditions with FFE
and VNE, and found there is no obvious difference under linear
distortions. With nonlinearity-dominated distortions, however,
NN-based equalizer considerably overwhelms FFE and VNE.
Therefore we fairly evaluate the performance of NN and prove
NN is indeed a powerful nonlinear equalizer. In the experiment,
we demonstrate 100 Gb/s/λ IMDD PON based on 20G-class
optical and electrical devices using NN as both linear and non-
linear equalizer, which is designed for downstream 100G-PON.
Considering the complexity, this system is not applicable for
upstream at present. The equalization performance is also com-
pared with FFE and VNE. To improve the loss budget, the
launch power is increased to 18 dBm, which induces strong
nonlinearity. Attributed to the powerful nonlinear equalization
capability of NN-based equalizer, −12 dBm receiver sensitivity
can still be achieved at the 7% FEC limit of bit-rate error (BER)
of 3.8 × 10−3, corresponding to a loss budget of 30 dB, meeting
IEEE802.3av PR30 requirement for PON applications [14].

The remainder of the paper is organized as follows. In the
principle part, we introduce the mathematic model and struc-
ture of FFE, VNE and NN in detail. In the simulation part,
we introduce different training and test models of NN, explain
which method can achieve the correct results, and provide a way
to set a standard about how to correctly use NN-based equalizer.
By comparing the equalization performance with FFE and VNE,
we find the limitation and potential of NN-based equalizer to
guide the following experiment. In the experiment part, we suc-
cessfully demonstrate an 100 Gb/s/λ IMDD PON with 30-dB
loss budget enabled by NN-based equalizer and discuss how to
further improve the system performance. Finally, we conclude
the paper in the conclusion part.

II. PRINCIPLE

Since FFE and VNE can be considered as a single-layer NN,
we will mainly compare the equalization performance of these
three equalizers. In this part, we introduce the mathematical
model and structure of the three equalizers in detail.

FFE is a common linear equalizer. This algorithm equalizes
a symbol by a linear combination of the sampled sequence of
the symbol’s neighborhood, which can be expressed as:

y (n) =
k∑

i=−k

wix (n + i) (1)

where x(n) is the sample of the n-th received symbol, while
y(n) is the corresponding output signal after equalizer. k =
(l-1)/2, in which l is the length of input sequence, or in other
word, the number of taps of FFE. wi is the weight for each
sample in related position in the sequence. FFE is an essentially
linear mapping, which means that it lacks the ability to defeat
the nonlinearities originated from modulation and transmission.
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Fig. 1. (a) Structure of FFE. (b) Structure of VNE.

VNE is inspired by Volterra series, a nonlinear model that can
approximate the nonlinear system. This equalization algorithm
is similar to FFE but adopt more higher-order features of the
sampled signal. A 3-order VNE is shown as:

y (n) =
k1∑

i1 =−k1

wi1 x (n + i1)

+
k2∑

i1 =−k2

k2∑

i2 =i1

wi1 ,i2 x (n + i1) x (n + i2)

+
k3∑

i1 =−k3

k3∑

i2 =i1

k3∑

i3 =i2

wi1 ,i2 ,i3 x (n + i1) x (n + i2) x (n + i3)

(2)

wherex(n) is the sampled signal and y(n) is the equalized out-
put. kj = (lj − 1)/2, in which lj is the input length of the j-th
order. wi1 ,...,ij

is the weight for each sample of the j-th order. As
the equation expresses, VNE is still like a linear combination
mapping. The difference is that it pre-processes the sampled
signal to obtain the higher-order features to provide the nonlin-
ear behavior of the system. The structures of FFE and VNE are
shown in Fig. 1.

Recently, NN has been attracting more and more attentions
because of its powerful capability in data processing such as
classification. It was proved that an NN containing at least one
hidden layer can fit and express any functions if it has enough
nodes [25]. NN is powerful to characterize nonlinear model,
which means that it may bring a better performance in equaliza-
tion for a transmission system with strong nonlinearities. This
motivates us to implement an NN-based equalizer and investi-
gate its performance.

Though an NN with more hidden layers or more nodes of
each layer is potentially more powerful to fit a complex func-
tion, the computational complexity of NN will increase a lot,
while also taking more time overhead. At the same time, the
increased complexity will reduce the training efficiency of NN,
since the non-convexity of the network enhances. It means that
the performance of such NN after training may not increase,
or even worse, become poorer. In addition, a complex network
cannot perform better than a simple network with proper size

Fig. 2. (a) Structure of NN-based equalizer. (b) Detail structure of hidden
layer.

for a relatively simple problem, but cost more time. Based on
these observations, we apply a simple structure for the NN-
based equalizer, with the input size of 51, and two hidden layers
of 128 nodes. We have validated that increasing the layers or the
nodes of any layer will not evidently improve the performance
in our evaluations.

The structure of NN-based equalizer we apply in this work is
shown in Fig. 2(a). It is a 3-layer network, containing two hidden
layers. The circles denote the nodes, also known as neurons.
It is a symbol-spaced equalizer, in which the input layer has
51 nodes, hence the network requires 51 consecutive sampled
symbols as input for a judged symbol. Each hidden layer has 128
nodes, while the output layer has 8 nodes, corresponding to 8
kind of symbols of 8-level pulse amplitude modulation (PAM-
8) signal. This basic NN is also called fully connected NN,
since each 2 nodes adjacent layers are connected. The output of
previous layer is the input of the subsequent layer. The output
of input layer is the samples themselves. Each node of hidden
layer and output layer is a computing unit, as simply expressed
follows:

y = f

(
n∑

i=1

wixi + b

)
(3)

where y is the output of this node, xi is the input of the node but
also the output of previous layer, while wi is the corresponding
weight and parameter b is the bias. f(·) is a nonlinear function,
called activation function, providing nonlinearity for NN. The
activation function of hidden layers is ReLU, while the output
activation is Softmax, which are expressed as below:

ReLU (x) = max (0, x) , Softmax (xi) =
exi

∑8
j=1 exj

(4)

Though an NN can achieve regression as FFE or VNE, in
this NN-based equalization, classification is applied to replace
the equalization and decision. The output yi = Soft max(xi)
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of the output layer constructs the output vector

y = (y1 , y2 , . . . , y8) (5)

where the max value yi of this vector means that the detected
symbol is the i-th symbol of PAM-8. Therefore, the target of the
i-th symbol should be:

ŷi =

⎛

⎝0, . . . , 1︸︷︷︸
i−th

. . . , 0

⎞

⎠ (6)

and the loss function of the network is the cross-entropy loss:

CrossEntropy = −
8∑

i=1

ŷi log (yi) (7)

where ŷi is the target, while yi is the corresponding output of
NN. As a concept of information theory, cross entropy evaluates
the similarity between two probability distributions. By train-
ing, the network can minimize the cross entropy step by step,
and adjust the probability distribution of output to get close to
the target. At the same time, the decisions of this NN-based
equalizer will gradually turn to the original symbols.

The network is trained with back-propagation and gradient
descent with Adam optimization [26]. The cross entropy loss of
output will be back-propagated to update the weight parameters
by mini-batch gradient descent with the batch size of 100∼1000,
according to the training feedback. Meantime, Adam will adap-
tively adjust the learning rate depending on the first and second
order moment estimation, to increase the training efficiency and
accelerate the convergent speed. In case of overfitting, we em-
ploy the dropout strategy [27] with the dropout rate of 0.2. This
strategy will be only active during training stage, which ran-
domly removes the nodes with a probability of 0.2 over a batch
training. It can improve the training efficiency in a way and
guarantee the generality of the model. To further improve the
training performance, we add the batch normalization [28] in
our network. It can be expressed as follows:

y =
x − E [x]√
V ar [x] + ∈ × γ + β (8)

where x is the input and y is the normalized output. The param-
eters γ and β are the learnable vectors of the size as the same as
x. The final flow chart for the hidden layer is shown in Fig. 2(b).

In our simulation and experiment, the data sets we use to
train and test are all random sequences generated by the random
function of MATLAB, except the evaluation about the influence
of random sequences and PRBS. Through the simulation, we
confirm that our NN-based equalizer is unable to characterize
the random sequences we used. The length of the whole data
sets are 200,000, 100,000 symbols for training, 10,000 for cross
validation and 90,000 for test. The final performance is evaluated
based on the BER of the test data set.

As shown in Fig. 1, FFE and VNE can be regarded as a
single-layer NN without activation function. VNE obtains the
nonlinearity by feature extraction for the input. Since the net-
work is a simple linear combination, it is easy to compute the
optimum weight by matrix inversion. The proposed NN-based

Fig. 3. Simulation setup of 33 Gbaud/s PAM8 system based on 20G-class
optical devices.

equalizer is a complete 3-layer network. Its activation function
guarantee that it is powerful enough to characterize the trans-
mission system. However, the parameter optimization of NN is
nonconvex, which means it is much more likely to achieve a
local optimum instead of the global optimum.

To entirely evaluate the performance of the NN-based equal-
izer, we compare FFE, VNE and NN-based equalizer and mea-
sure the BER in our simulation and experiment. With parameters
optimizing, the number of FFE taps is set to 91. The lengths of
the three order l1 , l2 and l3 are 91, 21 and 9 respectively. As for
NN, we set its configurations as we explain above. The numbers
of nodes of input layer, two hidden layers and the output layer
are 51, 128, 128 and 8 respectively.

We provide a simple analysis to compare the computational
complexities of the three algorithms. To equalize one symbol,
the FFE with 91 taps require 91 multiplications and 90 addi-
tions. As multiplication is much more complex than addition,
we only consider the number of multiplications. VNE needs
1048 multiplications. Our NN model contains 3 fully connected
layers, which require 2688, 16384 and 1024 multiplications re-
spectively. If the processor supports pipeline computing, each
layer can be computed in pipeline independently. We can reduce
the nodes of hidden layers to significantly reduce the complex-
ity, with a bit performance loss. For instance, let the node size
of hidden layer be 32, then only 1632, 1024 and 256 multiplica-
tions are needed. With a high parallel processor, almost all of the
multiplications can be operated in parallel. The complexity can
be acceptable in a way. In this paper, we just show the equaliza-
tion capability of NN-based equalizer. In the future study, NN
with simplified structure will be evaluated to achieve the similar
equalization performance.

III. SIMULATION

Matlab and Python are used to simulate this IMDD system
shown in Fig. 3. Transmitted data is 33 Gbaud/s PAM-8 with
symbols length of 100,000. The reason that we adopt 33 Gb/s
PAM-8 rather than 50 Gbaud/s PAM-4 to achieve 100 Gb/s bit
rate is the limited bandwidth of the arbitrary waveform gener-
ator (AWG) and the optical and electrical devices used in the
experiment, which will be introduced in detail later. A filter is
added serving as linear distortion, whose frequency response is
the same as that measured in the experiment with 3-dB band-
width limit of 16.2 GHz. Erbium doped fiber amplifier (EDFA)
is followed after the optical transmitter to amplify the signal
and simultaneously introduce amplified spontaneous emission
(ASE) noise. Split-step Fourier method is extensively used to
solve the pulse-propagation problem in nonlinear dispersive me-
dia and we use this numerical technique to simulate dispersion
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TABLE I
PARAMETERS IN FIBER

and nonlinear effect in optical fiber [29]. Fiber length is 25 km,
and other parameters are the same with the standard single mode
fiber (SSMF) presented in Table I. After fiber transmission and
photo-detection (PD), signal is sent into DSP model for equal-
ization and BER calculation.

PRBS is widely used in telecommunication to evaluate the
system performance because it exhibits statistical behavior sim-
ilar to a truly random sequence and can be generated easily.
Naturally, when NN is used in optical communication systems
as an equalizer, PRBS is also used to evaluate the equaliza-
tion performance, and no one doubts about the rationality at the
beginning. Different from other equalizers, NN has powerful
recognizing, modeling capabilities and the potential to charac-
terize the generation rule of PRBS. Based on this observation,
the performance of NN-based equalizer using PRBS as training
and test data may be overestimated. In Ref. [21], it was shown
that if the random data is used for training and test, the per-
formance of the NN-based equalizer is much worse than the
PRBS-based training and test case. Unfortunately, before and
even after this work was published, PRBS was used as training
and test data in most of experiments so the results are not reli-
able. After this question was put forward, some scientists begin
to doubt the effectivity of NN-based equalizer. To validate NN’s
effectivity and make it clear which data set should be used in
training and test, we test several kinds of combination of data
set and the results are shown in Fig. 4. We try to set a rule for
training and test data set when using NN as an equalizer based
on this investigation.

The length of training data and test data are both 100,000. In
case (a), repeated PRBS15 sequences are used to train and test,
resulting in amazingly low BER. In case (b), partial sequence of
PRBS23 is used to train and another part sequence is used to test.
BER performance is worse than case (a) but still shows good
performance. In case (c) and (d), where PRBS23 is used for
training, while PRBS25 and random data are used for test. BER
is extremely high. In case (e) and (f), PRBS15 and PRBS17
with 50,000 symbol length are put together for training and
random data is used for test. The only difference is that in case
(e), the first 50,000 symbols are PRBS15 and the latter 50,000
symbols are PRBS17, while in case (f), PRBS15 and PRBS17
are symbol-interleaved. In case (g) and (h), random data is used
for training while PRBS23 and random pattern are used for test.
Since the two test data has different generation rules, but take the
approximately equal BER curves, we validate that NN can only
extract the channel feature of the transmission system rather
than the inner characteristic of data. Hence, we consider (g) and
(h) as standard. In case (a) and (b), the training and test data have

Fig. 4. BER versus SNR under the conditions of different training and test
data.

completely different patterns, we attribute the good performance
to the modeling capability of NN, which successfully learns the
mathematical equation of generating PRBS23 the equalization
performance of NN is overestimated compared with (g) and
(h). The modeling capability of NN can be proved in case (c)
and (d), as NN learns the PRBS23 generation equation and try
to use this learned equation to predict the test data, the results
are completely wrong. The equalization performance of NN is
underestimated. In case (e) and (f), the BERs are slightly lower
than the cases of (c) and (d) but the equalization performance
of NN is still underestimated since NN can still learn the law of
the special training data to an extent. The BER results correctly
show the equalization capability of NN.

From the above analysis, we can know anyone who tries to use
PRBS as the training data will achieve the wrong results, either
overestimating or underestimating the equalization performance
of NN. Once random data is used for training, no matter what
kind of data is used for test, one can always fairly evaluate
the equalization performance of NN. This can be regarded as
a new rule of using NN as an equalizer in communication sys-
tems. In the following simulation and experiment, we use both
random data for training and test to evaluate the equalization
performance of NN.
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Fig. 5. The relationship between SNR and BER with launch power of
(a) 1.5 mW and (b) 22 mW.

Fig. 6. The relationship between launch power and BER with fixed noise
power and limited bandwidth.

To evaluate the efficiency of NN in our system, NN-based
equalizer is compared with FFE and VNE under the same
conditions. In Fig. 5, BER as a function of the received sig-
nal’s signal-to-noise ratio (SNR) is drawn with different launch
power. With low launch power, three algorithms show almost
the same performance, since they all have good performance in
equalizing linear distortions; but with high launch power, NN-
based equalizer has the lowest BER, proving that NN has its
advantage on dealing with nonlinear distortions. In Fig. 5(b),
the curve cannot be extended. Because even if signal is sent
without AWGN, SNR at receiver cannot be higher due to non-
linearity. In this case, VNE curve can never reach the BER target
with the configuration in our simulation.

Relationship between launch power and BER is shown in
Fig. 6 to illustrate that NN outperform VNE and FFE under
different launch power. With the increase of the launch power,
BER firstly decreases attributed to the improved SNR. Fur-
ther increasing the launch power will degrade BER since the
strong fiber nonlinearities exceed the equalization capability of
all equalizers. Apparently, NN has the best equalization perfor-
mance to deal with the nonlinearities. In the practical applica-
tions, the optimal launch power needs to be found to achieve
the best system performance. Especially in PON applications,
high launch power also increases the loss budget, therefore NN-

based equalizer is suitable to use in high-speed PONs requiring
high loss budget.

Our simulation sets a rule of how to train NN model for equal-
izing function, also shows the suitable working conditions for
NN-based equalizer. This will guide the following experiment.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this part, we demonstrate a 100 Gb/s/λ IMDD PON using
NN-based equalizer to improve the system performance. The
experimental setup is shown in Fig. 7(a). A Keysight M8195A
AWG with a 64 GSa/s sampling rate, a 20 GHz bandwidth and
about 0.6 V output voltage generates a 33 GBd PAM-8 ran-
dom sequence. The signal from AWG is directly modulated by
a 20 GHz Mach–Zehnder modulator (MZM). The laser from
a 1550 nm directly-modulated laser (DML) is injected to the
MZM biased at its quadrature point, while a 100 Mb/s PRBS
signal with a peak-to-peak voltage (Vp-p) of 1 mV from a pulse
pattern generator (PPG) is modulated on the laser to broaden the
optical spectrum, in order to suppress the stimulated Brillouin
scattering (SBS) under the condition of high launch power. We
do not directly use the DML as transmitter since its extinction
ratio is too small. An EDFA is followed the MZM to control
the launch optical power. After 20-km SSMF transmission, a
variable optical attenuator (VOA) is used to modify the power
of received signal to measure the receiver sensitivity. With an-
other EDFA as a preamplifier in optical network unit (ONU),
we can adjust the input optical power of the 20G-class photo-
detector (PD) to achieve the best receiver sensitivity. An optical
filter (OF) is applied to suppress the out of band amplification
spontaneous emission (ASE) noise induced by the preampli-
fier. Since the PD is not followed by trans-impedance amplifier
(TIA), an electrical amplifier (EA) is required to amplify the
received electrical signal, then sampled by a LeCroy digital
sampling oscilloscope (DSO) with a 59 GHz bandwidth and
160 GSa/s sample rate. Note that a 20G-class APD with TIA
and high receiver sensitivity may replace the EDFA, OF, PD and
EA, but unfortunately, we do not have such APD at present. The
sampled signal will be processed in Matlab and Python. The
offline DSP first resamples the signal to one sample per symbol.
The original random sequence can help extract the sample to
keep synchronous. The extracted transmitted sequence is sent
into the NN-based equalizer together with the original sequence.
After training and test, the equalizer computes and outputs the
BER.

Fig. 7(b) presents the eye diagram of electric back-to-back
(BTB) 33GBd PAM-8 signals, which is tend to close due to the
insufficient bandwidth of AWG. The bad quality of the elec-
trical BTB signal also limits the final system performance. For
PAM-8 signal, the power difference of different level signifi-
cantly affects the BER, so extinction ratio (ER) is an important
parameter to achieve good BER. PAM-8 signal with low ER
will be easily affected by noise resulting in bad receiver sen-
sitivity. Compared with externally-modulated signal by MZM,
directly-modulated signal using DML with much lower ER is
not suitable for PAM-8 signal generation if high receiver sensi-
tivity is required. That is why we use MZM rather than DML
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Fig. 7. (a) Experimental setup. (b) EBTB eye diagram. (c) The waveforms w/o and with broadened spectrum laser. (d) Frequency response of the system.

Fig. 8. BER performance comparison with different injected power to PD.

as the transmitter in this experiment even though external mod-
ulator has high cost. If PAM-4 signal is used, the case may
be different. However, 50 GBd PAM-4 cannot be generated
limited by the AWG. Compared with directly-modulated sig-
nal, externally-modulated signal generated by MZM also has a
drawback. The strong carrier power at the high launch power
case will cause severe SBS effect. To prevent this unwanted
nonlinearity, we modulate the optical carrier using a 100 Mb/s
PRBS data with low voltage to achieve frequency modulation.
The optical spectrum is broaden therefore the SBS threshold is
significantly improved. The effect of suppressing SBS is shown
in Fig. 7(c). Without data modulation in the laser, strong oscil-
lation is observed on the waveform but after data modulation
the oscillation is disappeared. The DML is biased at saturation
region, so residual intensity modulation can be neglected, which
will not affect the PAM-8 signal detection. The frequency re-
sponse of the whole system is shown in Fig. 7(d). The system
3-dB bandwidth is about 16.2 GHz.

We first investigate the sensitivity of PD in BTB case. The
signal adjusted by VOA is directly injected to PD without using
EDFA. Fig. 8 presents the BER for different injected power
to PD. The BER rises rapidly as the injected power decreases.
Since the amplitudes of adjacent symbols of PAM-8 are very

close, the device noise including thermal noise and shot noise
that cannot be eliminated by any algorithm tends to create huge
error for the symbol equalization. To illustrate this problem,
we provide a simple analysis. In this experiment, the Vp-p of
the noise from electric amplifier without optical input is about
30 mV, while its output Vp-p with 3-dBm injected power to
PD is just 500 mV. Consider only the influence of the noise,
ignoring any other influences, for simplicity, let the amplitude
difference of two adjacent symbols be 60 mV, then the Vp-p of
signals is more than 420 mV. Assume the noise is additive white
Gaussian noise (AWGN). It is generally known that a Gaussian
distribution X∼N(μ, σ2) follows the probability:

P (|x − μ| < 3σ) = 0.9974 (9)

where μ and σ2 are the mean and variance of the distribution
respectively. Let μ = 0 and σ = 5, then

P (|x| < 15) = 0.9974 (10)

It can be considered that most of the values are located in the
interval (−15, 15). As the Vp-p of the noise is about 30 mV, we
can simply assume the AWGN follows the distribution Xn ∼
N(0, 25). When the distance of adjacent symbols is 60 mV, it
requires a noise with the absolute value of 30 mV. According
to the probability integral table of Gaussian distribution, the
probability of making an error for a symbol is

P (|xn | > 30) < 0.0001 (11)

An adjacent symbol error may just take 1 bit error based on
Gray code, while a PAM-8 symbol has 3 bits. Hence the BER
is negligible.

If the power injected to PD reduces 3 dB, the amplitude
difference of symbols will be 30 mV. The probability to make
an adjacent symbol error is

P (|xn | > 15) = 0.0026 (12)

which means the BER can reach 0.0009. If we further reduce
the power by 3 dB, this value will become 0.0445, which is
unacceptable. Therefore, to effectively evaluate the performance
of NN-based equalizer, we fix the injected power to PD as 3 dBm
in the following experiment.
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Fig. 9. BER performance comparison with different launch power for OBTB.

Fig. 10. BER performance comparison with different launch power for 20-km
SSMF transmission.

Fig. 9 shows the optical back-to-back (OBTB) BER perfor-
mance versus the launch power. The VOA keeps the received
optical power before preamplifier −5 dBm, while the EDFA at
receiver controls the power injected to PD to be 3 dBm. As a
result, we learn that the performances of the three algorithms are
approximately equal, while varying little as the launch power
changes since only linear distortions exist in the system for
OBTB case. Frankly speaking, the BER for OBTB is a little
big. This is because the laser we use to suppress SBS is with
residual intensity modulation. Though we set the amplitude of
the modulation signal as small as possible, it still leads an ex-
tra error. In our experiment, we have achieved a well balance
between this interference and SBS suppression.

Fig. 10 shows the BER performance versus the launch power
for 20-km SSMF transmissions with −5 dBm received optical
power after the VOA. Again, the EDFA at receiver adjusts the
power injected to PD to 3 dBm. All the BER curves of the

Fig. 11. BER performance comparison of different received power for 20 km-
SSMF transmission.

three algorithms first decrease and then increase, while NN get
the best performance and VNE overwhelms FFE, which are
consistent with the simulation results. When the launch power
is small, the nonlinearity of the transmission system is weak so
that the performances of three equalizers are similar. As NN is
more powerful to equalize nonlinearity, it will get a significantly
better performance as the nonlinearity of the system improve to
a limited extent. However, as the launch power continues to
grow, the nonlinearities increase beyond the capability of the
algorithms, so that the BERs of all equalizers rise.

As we have proved that NN-based equalizer can perform bet-
ter than FFE and VNE in the transmission system with proper
nonlinearities, it becomes possible to increase the system loss
budget by increasing the launch power into an appropriate level.
To measure the maximal loss budget, we set 18 dBm as the
launch power to test the BER performance with different re-
ceived power. Besides, we still keep the PD injected power
3 dBm. As shown in Fig. 11, NN-based equalizer can achieve a
sensitivity of about−12 dBm at 7% FEC limit. With the 18-dBm
launch power, the total link loss budget can reach 30 dB.

We have achieved 30-dB loss budget for 100 Gb/s/λ PON
meeting IEEE802.3av PR30 requirement. Even though the value
is much lower than the coherent 100 Gb/s/λ PON with 38.9 dB
[13], we prove that, assisted by NN-based equalizer, IMDD tech-
nology is also feasible to achieve 100 Gb/s/λ PON with accept-
able loss budget. In this experiment, EDFA is used in the ONU,
which seems unacceptable for practical applications. If using a
20G-class APD+TIA with high receiver sensitivity, EDFA may
be replaced by SOA. The feasibility of the system will be sub-
stantially improved. Besides, an AWG with higher bandwidth
and enhanced signal quality will also improve the system per-
formance. In this experiment, we use fully-connected NN with
a typical NN structure to evaluate the system performance for
a proof-of-concept. Convolutional NN (CNN) or recurrent NN
(RNN) can also be used and compared for a better equalization
performance. We will try to further improve the loss budget of
the IMDD 100 Gb/s/λ PON, aiming at lower cost and lower
complexity for practical applications in the future work.
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V. CONCLUSION

We propose to use NN-based equalizer to mitigate both the
linear and nonlinear distortions in IMDD 100 Gb/s/λ PON based
on 20G-class optical and electrical devices. We revisit the train-
ing and test rules when using NN for equalization function.
Using PRBS as training sequence will achieve incorrect results,
either overestimating or underestimating the performance of
NN-based equalizer. Once random data is used as training se-
quence, both random data and PRBS can be used as test sequence
to fairly evaluate the equalization function of NN. Compared
with the traditional equalizers such as FFE and VNE, NN shows
the same equalization performance under linear distortions, but
much stronger equalization performance under nonlinear dis-
tortions, verifying NN as a powerful nonlinear equalizer. By
increasing the launch power to 18 dBm using a booster EDFA
in OLT, assisted by the NN-based equalizer, 30-dB loss budget
can be achieved, verifying the feasibility of 100 Gb/s/λ IMDD
PON using 20G-class optical and electrical devices. We also
analyze how to further improve the loss budget and reduce the
system cost.
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